These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20515704)

  • 1. An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models.
    Jacquemet V
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2090-8. PubMed ID: 20515704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations.
    Jacquemet V
    Comput Methods Programs Biomed; 2012 Nov; 108(2):548-58. PubMed ID: 21719141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eikonal-based initiation of fibrillatory activity in thin-walled cardiac propagation models.
    Herlin A; Jacquemet V
    Chaos; 2011 Dec; 21(4):043136. PubMed ID: 22225373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry.
    Zozor S; Blanc O; Jacquemet V; Virag N; Vesin JM; Pruvot E; Kappenberger L; Henriquez C
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):412-20. PubMed ID: 12723052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Propagation Models and Forward Calculation Methods on Cellular, Tissue and Organ Scale Atrial Electrophysiology.
    Nagel C; Espinosa CB; Gillette K; Gsell MAF; Sanchez J; Plank G; Dossel O; Loewe A
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):511-522. PubMed ID: 35921339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.
    Richter Y; Lind PG; Seemann G; Maass P
    J Theor Biol; 2017 Apr; 419():100-107. PubMed ID: 28192083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes.
    Jacquemet V; Henriquez CS
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1490-2. PubMed ID: 16119246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.
    Corrado C; Zemzemi N
    Med Image Anal; 2018 Jan; 43():186-197. PubMed ID: 29128759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of the spreading of excitation in myocardial tissue.
    Franzone PC; Guerri L
    Crit Rev Biomed Eng; 1992; 20(3-4):211-53. PubMed ID: 1478092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criterion for stable reentry in a ring of cardiac tissue.
    Cain JW
    J Math Biol; 2007 Sep; 55(3):433-48. PubMed ID: 17549481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of the electrical activity of the heart and computer simulation of the electrocardiogram.
    Gulrajani RM
    Crit Rev Biomed Eng; 1988; 16(1):1-66. PubMed ID: 3293913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New index for categorising cardiac reentrant wave: in silico evaluation.
    Shim EB; Hong SB; Lim KM; Leem CH; Youn CH; Pak HN; Earm YE; Noble D
    IET Syst Biol; 2011 Sep; 5(5):317-23. PubMed ID: 22010758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology.
    Pezzuto S; Hake J; Sundnes J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26685879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling wave propagation in realistic heart geometries using the phase-field method.
    Fenton FH; Cherry EM; Karma A; Rappel WJ
    Chaos; 2005 Mar; 15(1):13502. PubMed ID: 15836267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of a detailed model of cardiac conduction to ventricular dysrhythmogenesis.
    Saxberg BE; Cohen RJ
    Comput Cardiol; 1987; 13():207-10. PubMed ID: 11541827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations.
    Colli Franzone P; Guerri L; Rovida S
    J Math Biol; 1990; 28(2):121-76. PubMed ID: 2319210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model.
    Im UB; Kwon SS; Kim K; Lee YH; Park YK; Youn CH; Shim EB
    Prog Biophys Mol Biol; 2008; 96(1-3):339-56. PubMed ID: 17919689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.