These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20515736)

  • 41. The Role of NF-κB in Physiological Bone Development and Inflammatory Bone Diseases: Is NF-κB Inhibition "Killing Two Birds with One Stone"?
    Jimi E; Takakura N; Hiura F; Nakamura I; Hirata-Tsuchiya S
    Cells; 2019 Dec; 8(12):. PubMed ID: 31847314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors.
    Pi M; Quarles LD
    J Cell Biochem; 2005 Aug; 95(6):1081-92. PubMed ID: 15962313
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulators of G-protein signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity.
    Lambert NA; Johnston CA; Cappell SD; Kuravi S; Kimple AJ; Willard FS; Siderovski DP
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7066-71. PubMed ID: 20351284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha).
    Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH
    Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.
    Sophocleous A; Marino S; Logan JG; Mollat P; Ralston SH; Idris AI
    J Biol Chem; 2015 Sep; 290(36):22049-60. PubMed ID: 26195631
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development.
    Okamoto M; Murai J; Yoshikawa H; Tsumaki N
    J Bone Miner Res; 2006 Jul; 21(7):1022-33. PubMed ID: 16813523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wnt and the Wnt signaling pathway in bone development and disease.
    Wang Y; Li YP; Paulson C; Shao JZ; Zhang X; Wu M; Chen W
    Front Biosci (Landmark Ed); 2014 Jan; 19(3):379-407. PubMed ID: 24389191
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translating in vitro ligand bias into in vivo efficacy.
    Luttrell LM; Maudsley S; Gesty-Palmer D
    Cell Signal; 2018 Jan; 41():46-55. PubMed ID: 28495495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family.
    Kim HR; Xu J; Maeda S; Duc NM; Ahn D; Du Y; Chung KY
    Nat Commun; 2020 Jun; 11(1):3160. PubMed ID: 32572026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolutionary association of receptor-wide amino acids with G protein-coupling selectivity in aminergic GPCRs.
    Selçuk B; Erol I; Durdağı S; Adebali O
    Life Sci Alliance; 2022 Oct; 5(10):. PubMed ID: 35613896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nuclear G protein signaling: new tricks for old dogs.
    Campden R; Audet N; Hébert TE
    J Cardiovasc Pharmacol; 2015 Feb; 65(2):110-22. PubMed ID: 25590750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RGS2: a multifunctional regulator of G-protein signaling.
    Kehrl JH; Sinnarajah S
    Int J Biochem Cell Biol; 2002 May; 34(5):432-8. PubMed ID: 11906816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of cardiomyocyte signaling by RGS proteins: differential selectivity towards G proteins and susceptibility to regulation.
    Hao J; Michalek C; Zhang W; Zhu M; Xu X; Mende U
    J Mol Cell Cardiol; 2006 Jul; 41(1):51-61. PubMed ID: 16756988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signaling mechanisms and physiological functions of G-protein Gα
    Syrovatkina V; Huang XY
    Protein Sci; 2019 Feb; 28(2):305-312. PubMed ID: 30345641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling.
    Nunn C; Mao H; Chidiac P; Albert PR
    Semin Cell Dev Biol; 2006 Jun; 17(3):390-9. PubMed ID: 16765607
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overexpression of Gα11 in Osteoblast Lineage Cells Suppresses the Osteoanabolic Response to Intermittent PTH and Exercise.
    Dela Cruz A; Grynpas MD; Mitchell J
    Calcif Tissue Int; 2016 Oct; 99(4):423-34. PubMed ID: 27300035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of function of receptor-G-protein and receptor-RGS fusion proteins.
    Ward RJ; Milligan G
    Methods Mol Biol; 2004; 259():225-47. PubMed ID: 15250496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gq-Coupled Receptors in Autoimmunity.
    Zhang L; Shi G
    J Immunol Res; 2016; 2016():3969023. PubMed ID: 26885533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Re-examining the 'Dissociation Model' of G protein activation from the perspective of Gβγ signaling.
    Chung YK; Wong YH
    FEBS J; 2021 Apr; 288(8):2490-2501. PubMed ID: 33085809
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulators of G-protein signaling in receptor complexes.
    Sierra DA; Popov S; Wilkie TM
    Trends Cardiovasc Med; 2000 Aug; 10(6):263-8. PubMed ID: 11282305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.