BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20516347)

  • 21. Role of calcineurin in exercise-induced mitochondrial biogenesis.
    Garcia-Roves PM; Huss J; Holloszy JO
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1172-9. PubMed ID: 16403773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity.
    Lira VA; Benton CR; Yan Z; Bonen A
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E145-61. PubMed ID: 20371735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
    Nie Y; Sato Y; Wang C; Yue F; Kuang S; Gavin TP
    FASEB J; 2016 Nov; 30(11):3745-3758. PubMed ID: 27458245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2.
    Soriano FX; Liesa M; Bach D; Chan DC; Palacín M; Zorzano A
    Diabetes; 2006 Jun; 55(6):1783-91. PubMed ID: 16731843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise.
    Xu Y; Zhao C; Sun X; Liu Z; Zhang J
    Biochem Biophys Res Commun; 2015 Nov; 467(1):103-8. PubMed ID: 26408907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscles as molecular and metabolic machines.
    Bonen A
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E143-4. PubMed ID: 20442320
    [No Abstract]   [Full Text] [Related]  

  • 27. Low-volume interval training improves muscle oxidative capacity in sedentary adults.
    Hood MS; Little JP; Tarnopolsky MA; Myslik F; Gibala MJ
    Med Sci Sports Exerc; 2011 Oct; 43(10):1849-56. PubMed ID: 21448086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle.
    Vainshtein A; Tryon LD; Pauly M; Hood DA
    Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.
    Strobel NA; Peake JM; Matsumoto A; Marsh SA; Coombes JS; Wadley GD
    Med Sci Sports Exerc; 2011 Jun; 43(6):1017-24. PubMed ID: 21085043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise training increases the expression and nuclear localization of mRNA destabilizing proteins in skeletal muscle.
    Matravadia S; Martino VB; Sinclair D; Mutch DM; Holloway GP
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(7):R822-31. PubMed ID: 23904104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PGC-1alpha's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1alpha and PGC-1beta protein.
    Holloway GP; Perry CG; Thrush AB; Heigenhauser GJ; Dyck DJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E1060-9. PubMed ID: 18349111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle NAMPT is induced by exercise in humans.
    Costford SR; Bajpeyi S; Pasarica M; Albarado DC; Thomas SC; Xie H; Church TS; Jubrias SA; Conley KE; Smith SR
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E117-26. PubMed ID: 19887595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
    Geng J; Wei M; Yuan X; Liu Z; Wang X; Zhang D; Luo L; Wu J; Guo W; Qin ZH
    FASEB J; 2019 May; 33(5):6082-6098. PubMed ID: 30726106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner.
    Erlich AT; Brownlee DM; Beyfuss K; Hood DA
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C62-C72. PubMed ID: 29046293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of lipid-derived mediators in skeletal muscle insulin resistance.
    Taube A; Eckardt K; Eckel J
    Am J Physiol Endocrinol Metab; 2009 Nov; 297(5):E1004-12. PubMed ID: 19602581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of exercise in a cold environment on transcriptional control of PGC-1α.
    Shute RJ; Heesch MW; Zak RB; Kreiling JL; Slivka DR
    Am J Physiol Regul Integr Comp Physiol; 2018 Jun; 314(6):R850-R857. PubMed ID: 29537859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes.
    Zorzano A; Hernández-Alvarez MI; Palacín M; Mingrone G
    Biochim Biophys Acta; 2010; 1797(6-7):1028-33. PubMed ID: 20175989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PGC-1alpha-mediated adaptations in skeletal muscle.
    Olesen J; Kiilerich K; Pilegaard H
    Pflugers Arch; 2010 Jun; 460(1):153-62. PubMed ID: 20401754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular adaptations to aerobic exercise training in skeletal muscle of older women.
    Konopka AR; Douglass MD; Kaminsky LA; Jemiolo B; Trappe TA; Trappe S; Harber MP
    J Gerontol A Biol Sci Med Sci; 2010 Nov; 65(11):1201-7. PubMed ID: 20566734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.