These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20517155)

  • 41. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diagnosing Middle Ear Pathology in 6- to 9-Month-Old Infants Using Wideband Absorbance: A Risk Prediction Model.
    Myers J; Kei J; Aithal S; Aithal V; Driscoll C; Khan A; Manuel A; Joseph A; Malicka AN
    J Speech Lang Hear Res; 2018 Sep; 61(9):2386-2404. PubMed ID: 30208481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wideband acoustic-reflex test in a test battery to predict middle-ear dysfunction.
    Keefe DH; Fitzpatrick D; Liu YW; Sanford CA; Gorga MP
    Hear Res; 2010 May; 263(1-2):52-65. PubMed ID: 19772907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying Otosclerosis with Aural Acoustical Tests of Absorbance, Group Delay, Acoustic Reflex Threshold, and Otoacoustic Emissions.
    Keefe DH; Archer KL; Schmid KK; Fitzpatrick DF; Feeney MP; Hunter LL
    J Am Acad Audiol; 2017 Oct; 28(9):838-860. PubMed ID: 28972472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wideband reflectance norms for Caucasian and Chinese young adults.
    Shahnaz N; Bork K
    Ear Hear; 2006 Dec; 27(6):774-88. PubMed ID: 17086086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Longitudinal changes in real-ear to coupler difference measurements in infants.
    Bingham K; Jenstad LM; Shahnaz N
    J Am Acad Audiol; 2009 Oct; 20(9):558-68. PubMed ID: 19902703
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wideband energy reflectance measurements in adults with middle-ear disorders.
    Feeney MP; Grant IL; Marryott LP
    J Speech Lang Hear Res; 2003 Aug; 46(4):901-11. PubMed ID: 12959468
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Longitudinal Development of Wideband Absorbance and Admittance Through Infancy.
    Myers J; Kei J; Aithal S; Aithal V; Driscoll C; Khan A; Manuel A; Joseph A; Malicka AN
    J Speech Lang Hear Res; 2019 Jul; 62(7):2535-2552. PubMed ID: 31265355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaural multiple frequency tympanometry measures: clinical utility for unilateral conductive hearing loss.
    Norrix LW; Burgan B; Ramirez N; Velenovsky DS
    J Am Acad Audiol; 2013 Mar; 24(3):231-40. PubMed ID: 23506667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental changes in multifrequency tympanograms.
    Holte L; Margolis RH; Cavanaugh RM
    Audiology; 1991; 30(1):1-24. PubMed ID: 2059166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of consecutive wideband tympanometry trials on energy absorbance measures of the middle ear.
    Burdiek LM; Sun XM
    J Speech Lang Hear Res; 2014 Oct; 57(5):1997-2004. PubMed ID: 24824299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Test-retest reliability of the acoustic stapedial reflex test in healthy neonates.
    Mazlan R; Kei J; Hickson L
    Ear Hear; 2009 Jun; 30(3):295-301. PubMed ID: 19322092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy reflectance and tympanometry in normal and otosclerotic ears.
    Shahnaz N; Bork K; Polka L; Longridge N; Bell D; Westerberg BD
    Ear Hear; 2009 Apr; 30(2):219-33. PubMed ID: 19194289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wideband reflectance measurements in newborns: Relationship to otoscopic findings.
    Pitaro J; Al Masaoudi L; Motallebzadeh H; Funnell WR; Daniel SJ
    Int J Pediatr Otorhinolaryngol; 2016 Jul; 86():156-60. PubMed ID: 27260599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifrequency tympanometry: effects of ear canal volume compensation on middle ear resonance.
    Hanks WD; Mortensen BA
    J Am Acad Audiol; 1997 Feb; 8(1):53-8. PubMed ID: 9046069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting wideband real-ear-to-coupler differences in children using wideband acoustic immittance.
    McCreery RW; Grindle A; Merchant GR; Crukley J; Walker EA
    J Acoust Soc Am; 2023 Aug; 154(2):991-1002. PubMed ID: 37581511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit.
    Gouws N; Swanepoel W; De Jager LB
    S Afr J Commun Disord; 2017 Jun; 64(1):e1-e11. PubMed ID: 28697607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated Adaptive Wideband Acoustic Reflex Threshold Estimation in Normal-hearing Adults.
    Schairer KS; Putterman DB; Keefe DH; Fitzpatrick D; Garinis A; Kolberg E; Feeney MP
    Ear Hear; 2022; 43(2):370-378. PubMed ID: 34320528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.