These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 20517168)

  • 1. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J; Preis M; Shemesh R; Hadar T; Nageris BI
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear third window in the scala vestibuli: an animal model.
    Preis M; Attias J; Hadar T; Nageris BI
    Otol Neurotol; 2009 Aug; 30(5):657-60. PubMed ID: 19574945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A third window of the posterior semicircular canal: an animal model.
    Nageris BI; Attias J; Shemesh R; Hadar T; Preis M
    Laryngoscope; 2010 May; 120(5):1034-7. PubMed ID: 20422700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior canal dehiscence effect on hearing thresholds: animal model.
    Attias J; Nageris BI; Shemesh R; Shvero J; Preis M
    Otolaryngol Head Neck Surg; 2011 Oct; 145(4):648-53. PubMed ID: 21602535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cochlear window fixation on air- and bone-conduction thresholds.
    Nageris BI; Attias J; Shemesh R; Hod R; Preis M
    Otol Neurotol; 2012 Dec; 33(9):1679-84. PubMed ID: 23150097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hearing Loss After Vestibular Implantation in Sand Rats With Normal Hearing.
    Mizrachi A; Hilly O; Raveh E; Attias J; Nageris BI
    JAMA Otolaryngol Head Neck Surg; 2015 Sep; 141(9):840-4. PubMed ID: 26225636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique.
    Kumar G; Chokshi M; Richter CP
    Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory brainstem response thresholds to air and bone conducted clicks in neonates and adults.
    Stuart A; Yang EY; Stenstrom R; Reindorp AG
    Am J Otol; 1993 Mar; 14(2):176-82. PubMed ID: 8503493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.
    Lesinski SG; Prewitt J; Bray V; Aravamudhan R; Bermeo Blanco OA; Farmer-Fedor BL; Ward JA
    Otol Neurotol; 2014 Apr; 35(4):730-8. PubMed ID: 24622027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibular-evoked myogenic potential thresholds normalize on plugging superior canal dehiscence.
    Welgampola MS; Myrie OA; Minor LB; Carey JP
    Neurology; 2008 Feb; 70(6):464-72. PubMed ID: 18250291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation.
    Geerardyn A; Wils I; Putzeys T; Fierens G; Wouters J; Verhaert N
    Hear Res; 2024 Sep; 450():109049. PubMed ID: 38850830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds.
    Vander Werff KR; Prieve BA; Georgantas LM
    Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS; Raufer S; Guan X; Halpin CF; Lee DJ; Nakajima HH
    Ear Hear; 2020; 41(4):804-810. PubMed ID: 31688316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior semicircular canal dehiscence mimicking otosclerotic hearing loss.
    Merchant SN; Rosowski JJ; McKenna MJ
    Adv Otorhinolaryngol; 2007; 65():137-145. PubMed ID: 17245035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsurgical access for cell injection into the mammalian cochlea.
    Bogaerts S; Douglas S; Corlette T; Pau H; Saunders D; McKay S; Oleskevich S
    J Neurosci Methods; 2008 Feb; 168(1):156-63. PubMed ID: 17963843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The internal dimensions of the cochlear scalae with special reference to cochlear electrode insertion trauma.
    Biedron S; Prescher A; Ilgner J; Westhofen M
    Otol Neurotol; 2010 Jul; 31(5):731-7. PubMed ID: 20142798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Impacts of Scala Vestibuli Versus Scala Tympani Cochlear Implantation on Auditory Performances and Programming Parameters in Partially Ossified Cochleae.
    Trudel M; Côté M; Philippon D; Simonyan D; Villemure-Poliquin N; Bussières R
    Otol Neurotol; 2018 Jul; 39(6):700-706. PubMed ID: 29702527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.