These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20517400)

  • 1. Optical porosimetry and investigations of the porosity experienced by light interacting with porous media.
    Svensson T; Alerstam E; Johansson J; Andersson-Engels S
    Opt Lett; 2010 Jun; 35(11):1740-2. PubMed ID: 20517400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.
    Tsuyuki K; Miura S; Idris N; Kurniawan KH; Lie TJ; Kagawa K
    Appl Spectrosc; 2006 Jan; 60(1):61-4. PubMed ID: 16454913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porosity of different dental luting cements.
    Milutinović-Nikolić AD; Medić VB; Vuković ZM
    Dent Mater; 2007 Jun; 23(6):674-8. PubMed ID: 16860859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential mode excitation photoacoustic spectroscopy: a new photoacoustic detection scheme.
    Rey JM; Sigrist MW
    Rev Sci Instrum; 2007 Jun; 78(6):063104. PubMed ID: 17614602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical porosimetry by gas in scattering media absorption spectroscopy (GASMAS) applied to roller compaction ribbons.
    Johansson J; Sparén A; Wikström H; Tajarobi P; Koch R; Lundin P; Långberg A; Sebesta M; Lewander Xu M
    Int J Pharm; 2021 Jan; 592():120056. PubMed ID: 33161035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media.
    Pifferi A; Torricelli A; Taroni P; Comelli D; Bassi A; Cubeddu R
    Rev Sci Instrum; 2007 May; 78(5):053103. PubMed ID: 17552808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments.
    Knagge K; Smith JR; Smith LJ; Buriak J; Raftery D
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):85-9. PubMed ID: 16257190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions.
    Garrone E; Otero Areán C
    Chem Soc Rev; 2005 Oct; 34(10):846-57. PubMed ID: 16172674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM.
    Zoghlami K; Gómez-Gras D
    Microsc Res Tech; 2004 Dec; 65(6):270-5. PubMed ID: 15662619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model.
    Porcheron F; Thommes M; Ahmad R; Monson PA
    Langmuir; 2007 Mar; 23(6):3372-80. PubMed ID: 17305379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring solid-state quantum yields: The conversion of a frequency-doubled Nd:YAG diode laser pointer module into a viable light source.
    Daglen BC; Harris JD; Dax CD; Tyler DR
    Rev Sci Instrum; 2007 Jul; 78(7):074104. PubMed ID: 17672778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.
    Yang L; Somesfalean G; He S
    Opt Express; 2014 Feb; 22(3):2584-94. PubMed ID: 24663551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry.
    Dehl RE
    J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods.
    Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P
    Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.
    Shang Y; Wang X; Xu E; Tong C; Wu J
    Anal Chim Acta; 2011 Jan; 685(1):58-64. PubMed ID: 21168552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces.
    Stupic KF; Cleveland ZI; Pavlovskaya GE; Meersmann T
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):79-84. PubMed ID: 16202568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deriving time-dependent diffusion and relaxation rate in porous systems using eigenfunctions of the Laplace operator.
    Nordin M; Jacobi MN; Nydén M
    J Magn Reson; 2009 Dec; 201(2):205-11. PubMed ID: 19796974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.