These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20517477)

  • 21. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications.
    Remya KR; Joseph J; Mani S; John A; Varma HK; Ramesh P
    J Biomed Nanotechnol; 2013 Sep; 9(9):1483-94. PubMed ID: 23980497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect.
    Luo Y; Li D; Zhao J; Yang Z; Kang P
    Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and properties of nano-hydroxyapatite/poly(butylene succinate) porous scaffold for bone tissue engineering prepared by using ethanol as porogen.
    Li G; Qin S; Liu X; Zhang D; He M
    J Biomater Appl; 2019 Jan; 33(6):776-791. PubMed ID: 30482129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo evaluation of porous nanohydroxyapatite/polyamide 66 struts in a goat cervical fusion model.
    Liang X; Li F; Gong X; Li J; Yin S; Li Q; Liu Z; Zhao Z; Tu X; Huang W; Hu N
    Sci Rep; 2020 Jun; 10(1):10495. PubMed ID: 32591524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroxyapatite Dome for Bone Neoformation in Rabbit Tibia.
    Maeda NT; Yoshimoto M; Allegrini S; Bressiani AH
    Int J Oral Maxillofac Implants; 2016; 31(3):571-9. PubMed ID: 27183066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone regeneration and infiltration of an anisotropic composite scaffold: an experimental study of rabbit cranial defect repair.
    Li J; You F; Li Y; Zuo Y; Li L; Jiang J; Qu Y; Lu M; Man Y; Zou Q
    J Biomater Sci Polym Ed; 2016; 27(4):327-38. PubMed ID: 26775692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Repairing bone defect with nano-hydroxyapatite and polyamide 66 composite after giant cell tumor operations].
    Zhang SL; Zhou Y; Duan H; Min L; Zhang H; Shi R; Tu CQ; Pei FX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2012 May; 43(3):373-7. PubMed ID: 22812240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].
    Fan J; Chang S; Dong M; Huang D; Li J; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1119-24. PubMed ID: 23469542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A bioactive and bioresorbable porous cubic composite scaffold loaded with bone marrow aspirate: a potential alternative to autogenous bone grafting.
    Tanaka K; Takemoto M; Fujibayashi S; Neo M; Shikinami Y; Nakamura T
    Spine (Phila Pa 1976); 2011 Mar; 36(6):441-7. PubMed ID: 21124263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.
    Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q
    Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure.
    Li J; Zuo Y; Cheng X; Yang W; Wang H; Li Y
    J Mater Sci Mater Med; 2009 May; 20(5):1031-8. PubMed ID: 19115093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) as a novel bioactive bone screw.
    Su B; Peng X; Jiang D; Wu J; Qiao B; Li W; Qi X
    PLoS One; 2013; 8(7):e68342. PubMed ID: 23861888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair.
    Zhou K; Yu P; Shi X; Ling T; Zeng W; Chen A; Yang W; Zhou Z
    ACS Nano; 2019 Aug; 13(8):9595-9606. PubMed ID: 31381856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo evaluation of composites of PLGA and apatite with two different levels of crystallinity.
    Hayakawa T; Mochizuki C; Hara H; Yang F; Shen H; Wang S; Sato M
    J Mater Sci Mater Med; 2010 Jan; 21(1):251-8. PubMed ID: 19639266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study on a tissue-engineered bone using rhBMP-2 induced periosteal cells with a porous nano-hydroxyapatite/collagen/poly(L-lactic acid) scaffold.
    Zhang C; Hu YY; Cui FZ; Zhang SM; Ruan DK
    Biomed Mater; 2006 Jun; 1(2):56-62. PubMed ID: 18460757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects.
    Wang Z; Zhang D; Hu Z; Cheng J; Zhuo C; Fang X; Xing Y
    Mol Med Rep; 2015 Sep; 12(3):3345-3350. PubMed ID: 25997460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.