These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20517953)

  • 41. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter.
    Makui H; Roig E; Cole ST; Helmann JD; Gros P; Cellier MF
    Mol Microbiol; 2000 Mar; 35(5):1065-78. PubMed ID: 10712688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The natural resistance-associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake.
    Lin Z; Fernández-Robledo JA; Cellier MF; Vasta GR
    Biochemistry; 2011 Jul; 50(29):6340-55. PubMed ID: 21661746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR structures and orientation of the fourth transmembrane domain of the rat divalent metal transporter (DMT1) with G185D mutation in SDS micelles.
    Li H; Li F; Kwan M; He QY; Sun H
    Biopolymers; 2005 Mar; 77(4):173-83. PubMed ID: 15660380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transmembrane helix 6b links proton and metal release pathways and drives conformational change in an Nramp-family transition metal transporter.
    Bozzi AT; McCabe AL; Barnett BC; Gaudet R
    J Biol Chem; 2020 Jan; 295(5):1212-1224. PubMed ID: 31882536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nramp: from sequence to structure and mechanism of divalent metal import.
    Cellier MF
    Curr Top Membr; 2012; 69():249-93. PubMed ID: 23046654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutational analysis of charged residues in the putative KdpB-TM5 domain of the Kdp-ATPase of Escherichia coli.
    Bramkamp M; Altendorf K
    Ann N Y Acad Sci; 2003 Apr; 986():351-3. PubMed ID: 12763849
    [No Abstract]   [Full Text] [Related]  

  • 47. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K⁺ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter.
    Sato Y; Nanatani K; Hamamoto S; Shimizu M; Takahashi M; Tabuchi-Kobayashi M; Mizutani A; Schroeder JI; Souma S; Uozumi N
    J Biochem; 2014 May; 155(5):315-23. PubMed ID: 24519967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural Elements in the Transmembrane and Cytoplasmic Domains of the Metal Transporter SLC30A10 Are Required for Its Manganese Efflux Activity.
    Zogzas CE; Aschner M; Mukhopadhyay S
    J Biol Chem; 2016 Jul; 291(31):15940-57. PubMed ID: 27307044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins.
    Brazzolotto X; Pierrel F; Pelosi L
    Biochem J; 2014 May; 460(1):79-89. PubMed ID: 24624902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states.
    Gonzalez-Gutierrez G; Grosman C
    J Mol Biol; 2010 Nov; 403(5):693-705. PubMed ID: 20863833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli.
    Blount P; Sukharev SI; Moe PC; Schroeder MJ; Guy HR; Kung C
    EMBO J; 1996 Sep; 15(18):4798-805. PubMed ID: 8890153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Horizontal gene transfer of "prototype" Nramp in bacteria.
    Richer E; Courville P; Bergevin I; Cellier MF
    J Mol Evol; 2003 Oct; 57(4):363-76. PubMed ID: 14708570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring substrate diffusion in channels using biased molecular dynamics simulations.
    Gumbart J
    Methods Mol Biol; 2012; 914():337-50. PubMed ID: 22976037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed mutagenesis to study the structure-function relationships of ion channels.
    Yang W; Jiang LH
    Methods Mol Biol; 2013; 998():257-66. PubMed ID: 23529436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The structure of an open form of an E. coli mechanosensitive channel at 3.45 A resolution.
    Wang W; Black SS; Edwards MD; Miller S; Morrison EL; Bartlett W; Dong C; Naismith JH; Booth IR
    Science; 2008 Aug; 321(5893):1179-83. PubMed ID: 18755969
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel.
    Iscla I; Wray R; Blount P
    FASEB J; 2011 Feb; 25(2):694-702. PubMed ID: 21068398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A peptide derived from the putative transmembrane domain in the tail region of E. coli toxin hemolysin E assembles in phospholipid membrane and exhibits lytic activity to human red blood cells: plausible implications in the toxic activity of the protein.
    Yadav SP; Ahmad A; Pandey BK; Singh D; Asthana N; Verma R; Tripathi RK; Ghosh JK
    Biochim Biophys Acta; 2009 Feb; 1788(2):538-50. PubMed ID: 19111524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB.
    Inwood WB; Hall JA; Kim KS; Demirkhanyan L; Wemmer D; Zgurskaya H; Kustu S
    Genetics; 2009 Dec; 183(4):1327-40. PubMed ID: 19596908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploiting peptide nanostructures to construct functional artificial ion channels.
    Otis F; Auger M; Voyer N
    Acc Chem Res; 2013 Dec; 46(12):2934-43. PubMed ID: 23627544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural biology. The atomic architecture of a gas channel.
    Knepper MA; Agre P
    Science; 2004 Sep; 305(5690):1573-4. PubMed ID: 15361612
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.