These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20518500)

  • 1. Phosphorylation and coordination bond of mineral inhibit the hydrolysis of the beta-casein (1-25) peptide by intestinal brush-border membrane enzymes.
    Boutrou R; Coirre E; Jardin J; Léonil J
    J Agric Food Chem; 2010 Jul; 58(13):7955-61. PubMed ID: 20518500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylations of kappa-casein-derived caseinomacropeptide reduce its accessibility to endo- but not exointestinal brush border membrane peptidases.
    Boutrou R; Jardin J; Blais A; Tomé D; Léonil J
    J Agric Food Chem; 2008 Sep; 56(17):8166-73. PubMed ID: 18698795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase.
    Ani-Kibangou B; Bouhallab S; Mollé D; Henry G; Bureau F; Neuville D; Arhan P; Bouglé D
    J Nutr Biochem; 2005 Jul; 16(7):398-401. PubMed ID: 15992677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal alkaline phosphatase can transphosphorylate thiamin to thiamin monophosphate during intestinal transport in the rat.
    Rindi G; Ricci V; Gastaldi G; Patrini C
    Arch Physiol Biochem; 1995 Apr; 103(1):33-8. PubMed ID: 8574774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Casein(94-123)-derived peptides differently modulate production of mucins in intestinal goblet cells.
    Plaisancié P; Boutrou R; Estienne M; Henry G; Jardin J; Paquet A; Léonil J
    J Dairy Res; 2015 Feb; 82(1):36-46. PubMed ID: 25335546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis of beta-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis.
    Zevaco C; Desmazeaud MJ
    J Dairy Sci; 1980 Jan; 63(1):15-24. PubMed ID: 6768775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of caprine beta-casein by plasmin.
    Trujillo AJ; Guamis B; Carretero C
    J Dairy Sci; 1997 Oct; 80(10):2258-63. PubMed ID: 9361197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Milk proteins and iron absorption: contrasting effects of different caseinophosphopeptides.
    Kibangou IB; Bouhallab S; Henry G; Bureau F; Allouche S; Blais A; Guérin P; Arhan P; Bouglé DL
    Pediatr Res; 2005 Oct; 58(4):731-4. PubMed ID: 16189201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer.
    Regazzo D; Mollé D; Gabai G; Tomé D; Dupont D; Leonil J; Boutrou R
    Mol Nutr Food Res; 2010 Oct; 54(10):1428-35. PubMed ID: 20397193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport across Caco-2 cell monolayer and sensitivity to hydrolysis of two anxiolytic peptides from αs1-casein, α-casozepine, and αs1-casein-f91-97: effect of bile salts.
    Cakir-Kiefer C; Miclo L; Balandras F; Dary A; Soligot C; Le Roux Y
    J Agric Food Chem; 2011 Nov; 59(22):11956-65. PubMed ID: 21981611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of phosphopeptides derived from alpha s-casein and beta-casein using immobilized glutamic acid-specific endopeptidase and characterization of their calcium binding.
    Park O; Allen JC
    J Dairy Sci; 1998 Nov; 81(11):2858-65. PubMed ID: 9839227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The responses of rat intestinal brush border and cytosol peptide hydrolase activities to variation in dietary protein content: dietary regulation of intestinal peptide hydrolases.
    Nicholson JA; McCarthy DM; Kim YS
    J Clin Invest; 1974 Oct; 54(4):890-8. PubMed ID: 4430719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the phosphorylation level and deamidation susceptibility of equine beta-casein.
    Girardet JM; Miclo L; Florent S; Mollé D; Gaillard JL
    Proteomics; 2006 Jun; 6(12):3707-17. PubMed ID: 16691551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymatic properties of the brush border of enterocytes of different animals, and its role in the membrane digestion of proteins, fats and carbohydrates].
    Tsvetkova VA; Ugolev AM
    Fiziol Zh SSSR Im I M Sechenova; 1982 Apr; 68(4):433-45. PubMed ID: 6177560
    [No Abstract]   [Full Text] [Related]  

  • 15. [Mechanism of action and control in the digestion of proteins and peptides in humans].
    Frenhani PB; Burini RC
    Arq Gastroenterol; 1999; 36(3):139-47. PubMed ID: 10751901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Features of the digestive function of the intestines during intake of nontraditional protein].
    Sokolova AG; Gorodina SM; Dem'ianchuk TM
    Vopr Pitan; 1989; (6):39-42. PubMed ID: 2629254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of proteolytic digestion by intestinal goblet cell mucus.
    Shora W; Forstner GG; Forstner JF
    Gastroenterology; 1975 Mar; 68(3):470-9. PubMed ID: 1112451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease.
    Mizuno S; Nishimura S; Matsuura K; Gotou T; Yamamoto N
    J Dairy Sci; 2004 Oct; 87(10):3183-8. PubMed ID: 15377596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The topography of the intestinal enzymes in rhesus macaques].
    Gordova LA
    Zh Evol Biokhim Fiziol; 1996; 32(5):658-61. PubMed ID: 9092244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptides surviving the simulated gastrointestinal digestion of milk proteins: biological and toxicological implications.
    Picariello G; Ferranti P; Fierro O; Mamone G; Caira S; Di Luccia A; Monica S; Addeo F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(3-4):295-308. PubMed ID: 19962948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.