BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20518522)

  • 1. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.
    Wallis I; Prommer H; Simmons CT; Post V; Stuyfzand PJ
    Environ Sci Technol; 2010 Jul; 44(13):5035-41. PubMed ID: 20518522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.
    Wallis I; Prommer H; Pichler T; Post V; Norton SB; Annable MD; Simmons CT
    Environ Sci Technol; 2011 Aug; 45(16):6924-31. PubMed ID: 21718078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh.
    Polizzotto ML; Harvey CF; Sutton SR; Fendorf S
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18819-23. PubMed ID: 16357194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracer test with As(V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations.
    Höhn R; Isenbeck-Schröter M; Kent DB; Davis JA; Jakobsen R; Jann S; Niedan V; Scholz C; Stadler S; Tretner A
    J Contam Hydrol; 2006 Nov; 88(1-2):36-54. PubMed ID: 16945450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data.
    Saaltink MW; Ayora C; Stuyfzand PJ; Timmer H
    J Contam Hydrol; 2003 Aug; 65(1-2):1-18. PubMed ID: 12855198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic attenuation by oxidized aquifer sediments in Bangladesh.
    Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N
    Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.
    Rahman MM; Bakker M; Patty CH; Hassan Z; Röling WF; Ahmed KM; van Breukelen BM
    Sci Total Environ; 2015 Dec; 537():277-93. PubMed ID: 26282762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic mobilization and attenuation by mineral-water interactions: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Jun YS
    J Environ Monit; 2012 Jul; 14(7):1772-88. PubMed ID: 22706181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of Arsenic and Other Naturally Occurring Contaminants during Managed Aquifer Recharge: A Critical Review.
    Fakhreddine S; Prommer H; Scanlon BR; Ying SC; Nicot JP
    Environ Sci Technol; 2021 Feb; 55(4):2208-2223. PubMed ID: 33503373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic mobility and groundwater extraction in Bangladesh.
    Harvey CF; Swartz CH; Badruzzaman AB; Keon-Blute N; Yu W; Ali MA; Jay J; Beckie R; Niedan V; Brabander D; Oates PM; Ashfaque KN; Islam S; Hemond HF; Ahmed MF
    Science; 2002 Nov; 298(5598):1602-6. PubMed ID: 12446905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity.
    Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S
    Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.
    Patterson BM; Shackleton M; Furness AJ; Pearce J; Descourvieres C; Linge KL; Busetti F; Spadek T
    Water Res; 2010 Mar; 44(5):1471-81. PubMed ID: 19939429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.
    Fakhreddine S; Dittmar J; Phipps D; Dadakis J; Fendorf S
    Environ Sci Technol; 2015 Jul; 49(13):7802-9. PubMed ID: 26057865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical reactions between arsenic and zero-valent iron in water.
    Bang S; Johnson MD; Korfiatis GP; Meng X
    Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.