BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20518522)

  • 21. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer.
    Patterson BM; Shackleton M; Furness AJ; Bekele E; Pearce J; Linge KL; Busetti F; Spadek T; Toze S
    J Contam Hydrol; 2011 Mar; 122(1-4):53-62. PubMed ID: 21186066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.
    Pavelic P; Nicholson BC; Dillon PJ; Barry KE
    J Contam Hydrol; 2005 Mar; 77(1-2):119-41. PubMed ID: 15722175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Well-head arsenic removal units in remote villages of Indian subcontinent: field results and performance evaluation.
    Sarkar S; Gupta A; Biswas RK; Deb AK; Greenleaf JE; Sengupta AK
    Water Res; 2005 May; 39(10):2196-206. PubMed ID: 15913703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trace organic chemicals contamination in ground water recharge.
    Díaz-Cruz MS; Barceló D
    Chemosphere; 2008 Jun; 72(3):333-42. PubMed ID: 18378277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions.
    Radu T; Kumar A; Clement TP; Jeppu G; Barnett MO
    J Contam Hydrol; 2008 Jan; 95(1-2):30-41. PubMed ID: 17706833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia.
    Guo H; Zhang B; Li Y; Berner Z; Tang X; Norra S; Stüben D
    Environ Pollut; 2011 Apr; 159(4):876-83. PubMed ID: 21277054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the stability of arsenic immobilized by microbial sulfate reduction using TCLP extractions and long-term leaching techniques.
    Jong T; Parry DL
    Chemosphere; 2005 Jul; 60(2):254-65. PubMed ID: 15914245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material.
    Barbieri M; Carrera J; Sanchez-Vila X; Ayora C; Cama J; Köck-Schulmeyer M; López de Alda M; Barceló D; Tobella Brunet J; Hernández García M
    J Contam Hydrol; 2011 Nov; 126(3-4):330-45. PubMed ID: 22115096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments.
    Kim SH; Kim K; Ko KS; Kim Y; Lee KS
    Chemosphere; 2012 May; 87(8):851-6. PubMed ID: 22325979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study.
    Kao YH; Wang SW; Liu CW; Wang PL; Wang CH; Maji SK
    Sci Total Environ; 2011 Oct; 409(22):4818-30. PubMed ID: 21885091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate.
    Henderson TH; Mayer KU; Parker BL; Al TA
    J Contam Hydrol; 2009 May; 106(3-4):195-211. PubMed ID: 19361885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility.
    Bauer M; Fulda B; Blodau C
    Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.
    Colombani N; Mastrocicco M; Prommer H; Sbarbati C; Petitta M
    J Contam Hydrol; 2015 Aug; 179():116-31. PubMed ID: 26093106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic removal by iron oxide coated sponge: treatment and waste management.
    Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK
    Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent.
    Guo H; Stüben D; Berner Z
    J Colloid Interface Sci; 2007 Nov; 315(1):47-53. PubMed ID: 17662298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.