BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 20518524)

  • 1. Effect of nanoparticle conjugation on gene silencing by RNA interference.
    Singh N; Agrawal A; Leung AK; Sharp PA; Bhatia SN
    J Am Chem Soc; 2010 Jun; 132(24):8241-3. PubMed ID: 20518524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity.
    Kubo T; Yanagihara K; Takei Y; Mihara K; Sato Y; Seyama T
    Biochem Biophys Res Commun; 2012 Oct; 426(4):571-7. PubMed ID: 22982308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic SiRNA Delivery: Progress and Prospects.
    Roberts TC; Ezzat K; El Andaloussi S; Weinberg MS
    Methods Mol Biol; 2016; 1364():291-310. PubMed ID: 26472459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of gene silencing effect and membrane permeability by Peptide-conjugated 27-nucleotide small interfering RNA.
    Kubo T; Yanagihara K; Sato Y; Morita Y; Seyama T
    Molecules; 2012 Sep; 17(9):11089-102. PubMed ID: 22983148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan Nanoparticles for SiRNA Delivery In Vitro.
    Ragelle H; Vanvarenberg K; Vandermeulen G; Préat V
    Methods Mol Biol; 2016; 1364():143-50. PubMed ID: 26472448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkane-modified short polyethyleneimine for siRNA delivery.
    Schroeder A; Dahlman JE; Sahay G; Love KT; Jiang S; Eltoukhy AA; Levins CG; Wang Y; Anderson DG
    J Control Release; 2012 Jun; 160(2):172-6. PubMed ID: 22155553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing.
    Bagalkot V; Gao X
    ACS Nano; 2011 Oct; 5(10):8131-9. PubMed ID: 21936502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique Surface Modification of Silica Nanoparticles with Polyethylenimine (PEI) for siRNA Delivery Using Cerium Cation Coordination Chemistry.
    Kapilov-Buchman Y; Lellouche E; Michaeli S; Lellouche JP
    Bioconjug Chem; 2015 May; 26(5):880-9. PubMed ID: 25830668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design, selection, and evaluation of highly specific and functional siRNA incorporating unlocked nucleobase analogs.
    Vaish N; Agarwal P
    Methods Mol Biol; 2013; 942():111-34. PubMed ID: 23027048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the nanoparticle-AGO2 interaction for enhanced gene knockdown.
    Deshpande S; Singh N
    Soft Matter; 2018 May; 14(20):4169-4177. PubMed ID: 29687822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticulate RNA delivery systems in cancer.
    Sharma A; Jha NK; Dahiya K; Singh VK; Chaurasiya K; Jha AN; Jha SK; Mishra PC; Dholpuria S; Astya R; Nand P; Kumar A; Ruokolainen J; Kesari KK
    Cancer Rep (Hoboken); 2020 Oct; 3(5):e1271. PubMed ID: 32729987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing.
    Bartlett DW; Davis ME
    Biotechnol Bioeng; 2007 Jul; 97(4):909-21. PubMed ID: 17154307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy.
    Ku SH; Kim K; Choi K; Kim SH; Kwon IC
    Adv Healthc Mater; 2014 Aug; 3(8):1182-93. PubMed ID: 24577795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA.
    Sato Y; Matsui H; Sato R; Harashima H
    J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent RNAi by short RNA triggers.
    Chu CY; Rana TM
    RNA; 2008 Sep; 14(9):1714-9. PubMed ID: 18658119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery.
    Han J; Cai J; Borjihan W; Ganbold T; Rana TM; Baigude H
    Carbohydr Polym; 2015 Mar; 117():324-330. PubMed ID: 25498642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications.
    Buchman YK; Lellouche E; Zigdon S; Bechor M; Michaeli S; Lellouche JP
    Bioconjug Chem; 2013 Dec; 24(12):2076-87. PubMed ID: 24180511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy?
    Aghamiri S; Mehrjardi KF; Shabani S; Keshavarz-Fathi M; Kargar S; Rezaei N
    Nanomedicine (Lond); 2019 Aug; 14(15):2083-2100. PubMed ID: 31368405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.