BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 20518524)

  • 21. RNA interference technology with emphasis on delivery vehicles-prospects and limitations.
    Prabha S; Vyas R; Gupta N; Ahmed B; Chandra R; Nimesh S
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1391-9. PubMed ID: 26140615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic siRNA: principles, challenges, and strategies.
    Gavrilov K; Saltzman WM
    Yale J Biol Med; 2012 Jun; 85(2):187-200. PubMed ID: 22737048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research progress on the development of the strategies for siRNAs delivery in vivo].
    Tang D; Mao A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):775-9. PubMed ID: 23016434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.
    Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T
    Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Palmitic acid-conjugated 21-nucleotide siRNA enhances gene-silencing activity.
    Kubo T; Yanagihara K; Takei Y; Mihara K; Morita Y; Seyama T
    Mol Pharm; 2011 Dec; 8(6):2193-203. PubMed ID: 21985606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery.
    Egorova A; Shubina A; Sokolov D; Selkov S; Baranov V; Kiselev A
    Int J Pharm; 2016 Dec; 515(1-2):431-440. PubMed ID: 27789364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allele-specific silencing by RNA interference.
    Hohjoh H
    Methods Mol Biol; 2010; 623():67-79. PubMed ID: 20217544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs?
    Aigner A; Kögel D
    Nanomedicine (Lond); 2018 Jan; 13(1):89-103. PubMed ID: 29199893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of north bicyclo[3.1.0]hexane 2'-deoxy-pseudosugars on RNA interference: a novel class of siRNA modification.
    Terrazas M; Ocampo SM; Perales JC; Marquez VE; Eritja R
    Chembiochem; 2011 May; 12(7):1056-65. PubMed ID: 21452187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational siRNA design for RNA interference.
    Reynolds A; Leake D; Boese Q; Scaringe S; Marshall WS; Khvorova A
    Nat Biotechnol; 2004 Mar; 22(3):326-30. PubMed ID: 14758366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing siRNA and Evaluating Its Effect on RNA Targets Using qPCR and Western Blot.
    Vidarsdottir L; Goroshchuk O; Kolosenko I; Palm-Apergi C
    Methods Mol Biol; 2019; 2036():53-72. PubMed ID: 31410790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery materials for siRNA therapeutics.
    Kanasty R; Dorkin JR; Vegas A; Anderson D
    Nat Mater; 2013 Nov; 12(11):967-77. PubMed ID: 24150415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.
    Wu H; Shi Y; Huang C; Zhang Y; Wu J; Shen H; Jia N
    J Biomater Appl; 2014 Apr; 28(8):1180-9. PubMed ID: 23985535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles.
    Portis AM; Carballo G; Baker GL; Chan C; Walton SP
    Microsc Res Tech; 2010 Sep; 73(9):878-85. PubMed ID: 20803695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [New progress of the highly efficient siRNA design].
    Xu DH; Huang C; Liu LY; Song TS
    Yi Chuan; 2006 Nov; 28(11):1457-61. PubMed ID: 17098718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.
    Mykhaylyk O; Sanchez-Antequera Y; Vlaskou D; Cerda MB; Bokharaei M; Hammerschmid E; Anton M; Plank C
    Methods Mol Biol; 2015; 1218():53-106. PubMed ID: 25319646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Gold Nanoparticles for Gene Silencing.
    Tortiglione C; de la Fuente JM
    Methods Mol Biol; 2019; 1974():203-214. PubMed ID: 31099005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections.
    Bolhassani A; Milani A
    Curr Mol Pharmacol; 2020; 13(3):173-181. PubMed ID: 31760929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery.
    Whitehead KA; Sahay G; Li GZ; Love KT; Alabi CA; Ma M; Zurenko C; Querbes W; Langer RS; Anderson DG
    Mol Ther; 2011 Sep; 19(9):1688-94. PubMed ID: 21750531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.