BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 20520712)

  • 1. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
    Scheller S; Goenrich M; Boecher R; Thauer RK; Jaun B
    Nature; 2010 Jun; 465(7298):606-8. PubMed ID: 20520712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane.
    Scheller S; Goenrich M; Thauer RK; Jaun B
    J Am Chem Soc; 2013 Oct; 135(40):14975-84. PubMed ID: 24004388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.
    Wongnate T; Ragsdale SW
    J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase.
    Wongnate T; Sliwa D; Ginovska B; Smith D; Wolf MW; Lehnert N; Raugei S; Ragsdale SW
    Science; 2016 May; 352(6288):953-8. PubMed ID: 27199421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.
    Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U
    Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B.
    Goenrich M; Duin EC; Mahlert F; Thauer RK
    J Biol Inorg Chem; 2005 Jun; 10(4):333-42. PubMed ID: 15846525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues .
    Cedervall PE; Dey M; Pearson AR; Ragsdale SW; Wilmot CM
    Biochemistry; 2010 Sep; 49(35):7683-93. PubMed ID: 20707311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.
    Wagner T; Kahnt J; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.
    Shima S; Thauer RK
    Curr Opin Microbiol; 2005 Dec; 8(6):643-8. PubMed ID: 16242993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl-coenzyme M reductase from Methanothermobacter marburgensis.
    Duin EC; Prakash D; Brungess C
    Methods Enzymol; 2011; 494():159-87. PubMed ID: 21402215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states.
    Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances of structure, function, and catalytic mechanism of methyl-coenzyme M reductase].
    Lai Z; Huang G; Bai L
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4147-4157. PubMed ID: 34984864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea.
    Shao N; Fan Y; Chou CW; Yavari S; Williams RV; Amster IJ; Brown SM; Drake IJ; Duin EC; Whitman WB; Liu Y
    Commun Biol; 2022 Oct; 5(1):1113. PubMed ID: 36266535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
    Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO
    Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.