These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 20520712)
1. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Scheller S; Goenrich M; Boecher R; Thauer RK; Jaun B Nature; 2010 Jun; 465(7298):606-8. PubMed ID: 20520712 [TBL] [Abstract][Full Text] [Related]
2. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. Scheller S; Goenrich M; Thauer RK; Jaun B J Am Chem Soc; 2013 Oct; 135(40):14975-84. PubMed ID: 24004388 [TBL] [Abstract][Full Text] [Related]
3. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order. Wongnate T; Ragsdale SW J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570 [TBL] [Abstract][Full Text] [Related]
4. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904 [TBL] [Abstract][Full Text] [Related]
5. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Thauer RK Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290 [TBL] [Abstract][Full Text] [Related]
6. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Dey M; Li X; Kunz RC; Ragsdale SW Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696 [TBL] [Abstract][Full Text] [Related]
7. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Wongnate T; Sliwa D; Ginovska B; Smith D; Wolf MW; Lehnert N; Raugei S; Ragsdale SW Science; 2016 May; 352(6288):953-8. PubMed ID: 27199421 [TBL] [Abstract][Full Text] [Related]
8. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane. Ragsdale SW Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393 [TBL] [Abstract][Full Text] [Related]
9. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Shima S; Krueger M; Weinert T; Demmer U; Kahnt J; Thauer RK; Ermler U Nature; 2011 Nov; 481(7379):98-101. PubMed ID: 22121022 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. Goenrich M; Duin EC; Mahlert F; Thauer RK J Biol Inorg Chem; 2005 Jun; 10(4):333-42. PubMed ID: 15846525 [TBL] [Abstract][Full Text] [Related]
11. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues . Cedervall PE; Dey M; Pearson AR; Ragsdale SW; Wilmot CM Biochemistry; 2010 Sep; 49(35):7683-93. PubMed ID: 20707311 [TBL] [Abstract][Full Text] [Related]
12. Toward the Use of Methyl-Coenzyme M Reductase for Methane Bioconversion Applications. Dinh TA; Allen KD Acc Chem Res; 2024 Sep; 57(18):2746-2757. PubMed ID: 39190795 [TBL] [Abstract][Full Text] [Related]
13. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation. Wagner T; Kahnt J; Ermler U; Shima S Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699 [TBL] [Abstract][Full Text] [Related]
14. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Shima S; Thauer RK Curr Opin Microbiol; 2005 Dec; 8(6):643-8. PubMed ID: 16242993 [TBL] [Abstract][Full Text] [Related]
15. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle. Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465 [TBL] [Abstract][Full Text] [Related]
16. Methyl-coenzyme M reductase from Methanothermobacter marburgensis. Duin EC; Prakash D; Brungess C Methods Enzymol; 2011; 494():159-87. PubMed ID: 21402215 [TBL] [Abstract][Full Text] [Related]
17. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546 [TBL] [Abstract][Full Text] [Related]
18. [Advances of structure, function, and catalytic mechanism of methyl-coenzyme M reductase]. Lai Z; Huang G; Bai L Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4147-4157. PubMed ID: 34984864 [TBL] [Abstract][Full Text] [Related]
19. Methane as fuel for anaerobic microorganisms. Thauer RK; Shima S Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853 [TBL] [Abstract][Full Text] [Related]
20. Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea. Shao N; Fan Y; Chou CW; Yavari S; Williams RV; Amster IJ; Brown SM; Drake IJ; Duin EC; Whitman WB; Liu Y Commun Biol; 2022 Oct; 5(1):1113. PubMed ID: 36266535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]