These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 20521229)
1. Preparation of hydrogel substrates with tunable mechanical properties. Tse JR; Engler AJ Curr Protoc Cell Biol; 2010 Jun; Chapter 10():Unit 10.16. PubMed ID: 20521229 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. Sunyer R; Jin AJ; Nossal R; Sackett DL PLoS One; 2012; 7(10):e46107. PubMed ID: 23056241 [TBL] [Abstract][Full Text] [Related]
3. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking. Bonnesœur S; Morin-Grognet S; Thoumire O; Le Cerf D; Boyer O; Vannier JP; Labat B J Biomed Mater Res A; 2020 May; 108(5):1256-1268. PubMed ID: 32056374 [TBL] [Abstract][Full Text] [Related]
4. Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. Cretu A; Castagnino P; Assoian R J Vis Exp; 2010 Aug; (42):. PubMed ID: 20736914 [TBL] [Abstract][Full Text] [Related]
5. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. Abdallah M; Martin M; El Tahchi MR; Balme S; Faour WH; Varga B; Cloitre T; Páll O; Cuisinier FJG; Gergely C; Bassil MJ; Bechelany M ACS Appl Mater Interfaces; 2019 Sep; 11(36):32623-32632. PubMed ID: 31424195 [TBL] [Abstract][Full Text] [Related]
6. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. Xia T; Liu W; Yang L J Biomed Mater Res A; 2017 Jun; 105(6):1799-1812. PubMed ID: 28187512 [TBL] [Abstract][Full Text] [Related]
7. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Hadden WJ; Young JL; Holle AW; McFetridge ML; Kim DY; Wijesinghe P; Taylor-Weiner H; Wen JH; Lee AR; Bieback K; Vo BN; Sampson DD; Kennedy BF; Spatz JP; Engler AJ; Choi YS Proc Natl Acad Sci U S A; 2017 May; 114(22):5647-5652. PubMed ID: 28507138 [TBL] [Abstract][Full Text] [Related]
8. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Jiang T; Zhao J; Yu S; Mao Z; Gao C; Zhu Y; Mao C; Zheng L Biomaterials; 2019 Jan; 188():130-143. PubMed ID: 30343256 [TBL] [Abstract][Full Text] [Related]
9. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture. Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381 [TBL] [Abstract][Full Text] [Related]
11. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013 [TBL] [Abstract][Full Text] [Related]
12. Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Oyama TG; Oyama K; Kimura A; Yoshida F; Ishida R; Yamazaki M; Miyoshi H; Taguchi M Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030146 [TBL] [Abstract][Full Text] [Related]
13. Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues. Grevesse T; Versaevel M; Gabriele S J Vis Exp; 2014 Aug; (90):. PubMed ID: 25225964 [TBL] [Abstract][Full Text] [Related]
14. A one pot, one step method for the preparation of clickable hydrogels by photoinitiated polymerization. Yilmaz G; Kahveci MU; Yagci Y Macromol Rapid Commun; 2011 Dec; 32(23):1906-9. PubMed ID: 21910152 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness. Wang T; Lai JH; Han LH; Tong X; Yang F Tissue Eng Part A; 2014 Aug; 20(15-16):2131-9. PubMed ID: 24707837 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Vázquez-Victorio G; Rodríguez-Hernández A; Cano-Jorge M; Monroy-Romero AX; Macías-Silva M; Hautefeuille M Methods Mol Biol; 2021; 2174():277-297. PubMed ID: 32813257 [TBL] [Abstract][Full Text] [Related]
17. Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications. Denisin AK; Pruitt BL ACS Appl Mater Interfaces; 2016 Aug; 8(34):21893-902. PubMed ID: 26816386 [TBL] [Abstract][Full Text] [Related]
18. Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels. Vining KH; Stafford A; Mooney DJ Biomaterials; 2019 Jan; 188():187-197. PubMed ID: 30366219 [TBL] [Abstract][Full Text] [Related]
19. Selective stiffening of fibrin hydrogels with micron resolution via photocrosslinking. Keating M; Lim M; Hu Q; Botvinick E Acta Biomater; 2019 Mar; 87():88-96. PubMed ID: 30660778 [TBL] [Abstract][Full Text] [Related]
20. Time-dependent migratory behaviors in the long-term studies of fibroblast durotaxis on a hydrogel substrate fabricated with a soft band. Kuboki T; Chen W; Kidoaki S Langmuir; 2014 Jun; 30(21):6187-96. PubMed ID: 24851722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]