These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20522011)

  • 41. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease.
    Sebastianutto I; Cenci MA; Fieblinger T
    Neurobiol Dis; 2017 Sep; 105():117-131. PubMed ID: 28578004
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes.
    Woodman B; Butler R; Landles C; Lupton MK; Tse J; Hockly E; Moffitt H; Sathasivam K; Bates GP
    Brain Res Bull; 2007 Apr; 72(2-3):83-97. PubMed ID: 17352931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect.
    Levine MS; Cepeda C; Hickey MA; Fleming SM; Chesselet MF
    Trends Neurosci; 2004 Nov; 27(11):691-7. PubMed ID: 15474170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Replicating Huntington's disease phenotype in experimental animals.
    Brouillet E; Condé F; Beal MF; Hantraye P
    Prog Neurobiol; 1999 Dec; 59(5):427-68. PubMed ID: 10515664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.
    Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM
    Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of Phosphodiesterases in Huntington's Disease.
    Fusco FR; Paldino E
    Adv Neurobiol; 2017; 17():285-304. PubMed ID: 28956337
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene-environment interactions, neuronal dysfunction and pathological plasticity in Huntington's disease.
    van Dellen A; Grote HE; Hannan AJ
    Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1007-19. PubMed ID: 16445565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.
    Handley RR; Reid SJ; Brauning R; Maclean P; Mears ER; Fourie I; Patassini S; Cooper GJS; Rudiger SR; McLaughlan CJ; Verma PJ; Gusella JF; MacDonald ME; Waldvogel HJ; Bawden CS; Faull RLM; Snell RG
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):E11293-E11302. PubMed ID: 29229845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies.
    Wang LH; Qin ZH
    Acta Pharmacol Sin; 2006 Oct; 27(10):1287-302. PubMed ID: 17007735
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer's disease, Parkinson's disease, Huntington's disease.
    Pantiya P; Thonusin C; Chattipakorn N; Chattipakorn SC
    Mitochondrion; 2020 Nov; 55():14-47. PubMed ID: 32828969
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics.
    Blum D; Hourez R; Galas MC; Popoli P; Schiffmann SN
    Lancet Neurol; 2003 Jun; 2(6):366-74. PubMed ID: 12849153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transgenic animal models of neurodegeneration based on human genetic studies.
    Harvey BK; Richie CT; Hoffer BJ; Airavaara M
    J Neural Transm (Vienna); 2011 Jan; 118(1):27-45. PubMed ID: 20931247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel therapeutic targets for Huntington's disease.
    Hannan AJ
    Expert Opin Ther Targets; 2005 Aug; 9(4):639-50. PubMed ID: 16083335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Systematic metabolic analysis of potential target, therapeutic drug, diagnostic method and animal model applicability in three neurodegenerative diseases.
    Li WX; Li GH; Tong X; Yang PP; Huang JF; Xu L; Dai SX
    Aging (Albany NY); 2020 May; 12(10):9882-9914. PubMed ID: 32461378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases.
    Klonarakis M; De Vos M; Woo EK; Ralph LT; Thacker JS; Gil-Mohapel J
    Neurosci Biobehav Rev; 2022 Apr; 135():104541. PubMed ID: 35063495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preclinical models: needed in translation? A Pro/Con debate.
    Philips T; Rothstein JD; Pouladi MA
    Mov Disord; 2014 Sep; 29(11):1391-6. PubMed ID: 25216370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo.
    Zhunina OA; Yabbarov NG; Orekhov AN; Deykin AV
    Int J Exp Pathol; 2019 Apr; 100(2):64-71. PubMed ID: 31090117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease.
    Troncoso-Escudero P; Sepulveda D; Pérez-Arancibia R; Parra AV; Arcos J; Grunenwald F; Vidal RL
    Front Aging Neurosci; 2020; 12():571185. PubMed ID: 33101007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cognitive deficits in animal models of basal ganglia disorders.
    Brooks SP; Dunnett SB
    Brain Res Bull; 2013 Mar; 92():29-40. PubMed ID: 22588013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Depression in neurodegenerative diseases: Common mechanisms and current treatment options.
    Galts CPC; Bettio LEB; Jewett DC; Yang CC; Brocardo PS; Rodrigues ALS; Thacker JS; Gil-Mohapel J
    Neurosci Biobehav Rev; 2019 Jul; 102():56-84. PubMed ID: 30995512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.