These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20522150)

  • 1. Effects of small increases in copper levels on culturable basidiomycetous yeasts in low-nutrient soils.
    Vreulink JM; Stone W; Botha A
    J Appl Microbiol; 2010 Oct; 109(4):1411-21. PubMed ID: 20522150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in community composition provide a mechanism for maintenance of activity of soil yeasts in the presence of elevated copper levels.
    Cornelissen S; Botha A; Conradie WJ; Wolfaardt GM
    Can J Microbiol; 2003 Jul; 49(7):425-32. PubMed ID: 14569283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the microbial community to copper oxychloride in acidic sandy loam soil.
    Du Plessis KR; Botha A; Joubert L; Bester R; Conradie WJ; Wolfaardt GM
    J Appl Microbiol; 2005; 98(4):901-9. PubMed ID: 15752337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of soil characteristics on copper sorption from a copper oxychloride fungicide.
    Pose E; Rial-Otero R; Paradelo M; López-Periago JE
    J Agric Food Chem; 2009 Apr; 57(7):2843-8. PubMed ID: 19334759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology of cultivable yeasts in pristine forests in northern Patagonia (Argentina) influenced by different environmental factors.
    Mestre MC; Fontenla S; Rosa CA
    Can J Microbiol; 2014 Jun; 60(6):371-82. PubMed ID: 24849380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal tolerance of yeasts isolated from water, soil and plant environments.
    Vadkertiová R; Sláviková E
    J Basic Microbiol; 2006; 46(2):145-52. PubMed ID: 16598828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil properties that impact yeast and actinomycete numbers in sandy low nutrient soils.
    Vreulink JM; Esterhuyse A; Jacobs K; Botha A
    Can J Microbiol; 2007 Dec; 53(12):1369-74. PubMed ID: 18059569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the influence of raindrop size on the wash-off losses of copper-based fungicides sprayed on potato (Solanum tuberosum L.) leaves.
    Pérez-Rodríguez P; Paradelo M; Rodríguez-Salgado I; Fernández-Calviño D; López-Periago JE
    J Environ Sci Health B; 2013; 48(9):737-46. PubMed ID: 23688224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils.
    Adriaensen K; Vrålstad T; Noben JP; Vangronsveld J; Colpaert JV
    Appl Environ Microbiol; 2005 Nov; 71(11):7279-84. PubMed ID: 16269769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil.
    Vázquez-Blanco R; Arias-Estévez M; Bååth E; Fernández-Calviño D
    Environ Pollut; 2020 Feb; 257():113585. PubMed ID: 31753627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of yeasts associated with Panax ginseng.
    Hong SG; Lee KH; Kwak J; Bae KS
    J Microbiol; 2006 Dec; 44(6):674-9. PubMed ID: 17205048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils.
    Van Zwieten L; Rust J; Kingston T; Merrington G; Morris S
    Sci Total Environ; 2004 Aug; 329(1-3):29-41. PubMed ID: 15262156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper fungicide residues in Australian vineyard soils.
    Wightwick AM; Mollah MR; Partington DL; Allinson G
    J Agric Food Chem; 2008 Apr; 56(7):2457-64. PubMed ID: 18321047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil.
    Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V
    Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of copper originating from different fungicides in contrasting soil types.
    Komárek M; Vanek A; Chrastný V; Száková J; Kubová K; Drahota P; Balík J
    J Hazard Mater; 2009 Jul; 166(2-3):1395-402. PubMed ID: 19157706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiration parameters determined by the ISO-17155 method as potential indicators of copper pollution in vineyard soils after long-term fungicide treatment.
    Soler-Rovira P; Fernández-Calviño D; Arias-Estévez M; Plaza C; Polo A
    Sci Total Environ; 2013 Mar; 447():25-31. PubMed ID: 23376513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-regional variability in environmental availability of fungicide derived copper in vineyard soils: an Australian case study.
    Wightwick AM; Salzman SA; Reichman SM; Allinson G; Menzies NW
    J Agric Food Chem; 2010 Jan; 58(1):449-57. PubMed ID: 20000746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between soil copper content and copper resistance in yeast of an ultisol in midwestern Nigeria.
    Ekundayo EO; Obuekwe CO
    Plant Foods Hum Nutr; 1999; 53(2):175-81. PubMed ID: 10472795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils.
    Ranjard L; Echairi A; Nowak V; Lejon DP; Nouaïm R; Chaussod R
    FEMS Microbiol Ecol; 2006 Nov; 58(2):303-15. PubMed ID: 17064271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.