These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20522539)

  • 1. Saccadic preparation in the frontal eye field is modulated by distinct trial history effects as revealed by magnetoencephalography.
    Lee AK; Hämäläinen MS; Dyckman KA; Barton JJ; Manoach DS
    Cereb Cortex; 2011 Feb; 21(2):245-53. PubMed ID: 20522539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of the frontal eye field reveals persistent effective connectivity after controlled behavior.
    Akaishi R; Morishima Y; Rajeswaren VP; Aoki S; Sakai K
    J Neurosci; 2010 Mar; 30(12):4295-305. PubMed ID: 20335465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural activity is modulated by trial history: a functional magnetic resonance imaging study of the effects of a previous antisaccade.
    Manoach DS; Thakkar KN; Cain MS; Polli FE; Edelman JA; Fischl B; Barton JJ
    J Neurosci; 2007 Feb; 27(7):1791-8. PubMed ID: 17301186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping neural dynamics underlying saccade preparation and execution and their relation to reaction time and direction errors.
    Bells S; Isabella SL; Brien DC; Coe BC; Munoz DP; Mabbott DJ; Cheyne DO
    Hum Brain Mapp; 2020 May; 41(7):1934-1949. PubMed ID: 31916374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous use of context during task preparation in schizophrenia: a magnetoencephalography study.
    Manoach DS; Lee AK; Hämäläinen MS; Dyckman KA; Friedman JS; Vangel M; Goff DC; Barton JJ
    Biol Psychiatry; 2013 May; 73(10):967-75. PubMed ID: 23380717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study.
    Nagel M; Sprenger A; Lencer R; Kömpf D; Siebner H; Heide W
    BMC Neurosci; 2008 Sep; 9():89. PubMed ID: 18801205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching, plasticity, and prediction in a saccadic task-switch paradigm.
    Barton JJ; Greenzang C; Hefter R; Edelman J; Manoach DS
    Exp Brain Res; 2006 Jan; 168(1-2):76-87. PubMed ID: 16096781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inter-trial effect of prepared but not executed antisaccades.
    Yeung S; Rubino C; Viswanathan J; Barton JJ
    Exp Brain Res; 2014 Dec; 232(12):3699-705. PubMed ID: 25106758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical neurodynamics of inhibitory control.
    Hwang K; Ghuman AS; Manoach DS; Jones SR; Luna B
    J Neurosci; 2014 Jul; 34(29):9551-61. PubMed ID: 25031398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI activation in the human frontal eye field is correlated with saccadic reaction time.
    Connolly JD; Goodale MA; Goltz HC; Munoz DP
    J Neurophysiol; 2005 Jul; 94(1):605-11. PubMed ID: 15590732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stimulus-response compatibility on neural selection in frontal eye field.
    Sato TR; Schall JD
    Neuron; 2003 May; 38(4):637-48. PubMed ID: 12765614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of proactive and reactive inhibition of saccadic eye movements.
    Talanow T; Kasparbauer AM; Lippold JV; Weber B; Ettinger U
    Brain Imaging Behav; 2020 Feb; 14(1):72-88. PubMed ID: 30298238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effector-specific fields for motor preparation in the human frontal cortex.
    Connolly JD; Goodale MA; Cant JS; Munoz DP
    Neuroimage; 2007 Feb; 34(3):1209-19. PubMed ID: 17134914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.