BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20522542)

  • 1. Redox cycling in iron uptake, efflux, and trafficking.
    Kosman DJ
    J Biol Chem; 2010 Aug; 285(35):26729-26735. PubMed ID: 20522542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking.
    Kosman DJ
    Metallomics; 2018 Mar; 10(3):370-377. PubMed ID: 29484341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of iron uptake in fungi.
    Kosman DJ
    Mol Microbiol; 2003 Mar; 47(5):1185-97. PubMed ID: 12603727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric iron reductases and their contribution to unicellular ferrous iron uptake.
    Cain TJ; Smith AT
    J Inorg Biochem; 2021 May; 218():111407. PubMed ID: 33684686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial ferric iron reductases.
    Schröder I; Johnson E; de Vries S
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):427-47. PubMed ID: 12829278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic study of the coupled iron-ceruloplasmin catalyzed oxidation of ascorbate in the presence of albumin.
    Løvstad RA
    Biometals; 1995 Oct; 8(4):328-31. PubMed ID: 7580053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research of iron reduction and the iron reductase localization of anammox bacteria.
    Zhao R; Zhang H; Li Y; Jiang T; Yang F
    Curr Microbiol; 2014 Dec; 69(6):880-7. PubMed ID: 25100226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system.
    Jeong SY; David S
    J Biol Chem; 2003 Jul; 278(29):27144-8. PubMed ID: 12743117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate efflux as a new strategy for iron reduction and transport in plants.
    Grillet L; Ouerdane L; Flis P; Hoang MT; Isaure MP; Lobinski R; Curie C; Mari S
    J Biol Chem; 2014 Jan; 289(5):2515-25. PubMed ID: 24347170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PUTATIVE FERROXIDASES IN THE FLAVINOGENIC YEAST PICHIA GUILLIERMONDII ARE REGULATED BY IRON ACQUISITION.
    Fedorovych D; Boretsky Y; Bobak Y; Prokopiv T; Sybirny A
    Tsitol Genet; 2015; 49(5):13-9. PubMed ID: 26638492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leishmania amazonensis ferric iron reductase (LFR1) is a bifunctional enzyme: Unveiling a NADPH oxidase activity.
    Rocco-Machado N; Cosentino-Gomes D; Nascimento MT; Paes-Vieira L; Khan YA; Mittra B; Andrews NW; Meyer-Fernandes JR
    Free Radic Biol Med; 2019 Nov; 143():341-353. PubMed ID: 31446054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metalloreductase Fre6p in Fe-efflux from the yeast vacuole.
    Singh A; Kaur N; Kosman DJ
    J Biol Chem; 2007 Sep; 282(39):28619-28626. PubMed ID: 17681937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquisition of iron by enterococci: some properties and role of assimilating ferric iron reductases.
    Lisiecki P; Mikucki J
    Pol J Microbiol; 2006; 55(4):271-7. PubMed ID: 17416063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Fe2+ and Fe3+ transport by iron-loaded cardiac myocytes.
    Parkes JG; Olivieri NF; Templeton DM
    Toxicology; 1997 Feb; 117(2-3):141-51. PubMed ID: 9057893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron metabolism in the social amoeba Dictyostelium discoideum: A role for ferric chelate reductases.
    Peracino B; Monica V; Primo L; Bracco E; Bozzaro S
    Eur J Cell Biol; 2022; 101(3):151230. PubMed ID: 35550931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition.
    Huston WM; Jennings MP; McEwan AG
    Mol Microbiol; 2002 Sep; 45(6):1741-50. PubMed ID: 12354238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and incorporation of iron in sugar beet chloroplasts.
    Solti A; Kovács K; Basa B; Vértes A; Sárvári E; Fodor F
    Plant Physiol Biochem; 2012 Mar; 52():91-7. PubMed ID: 22305071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.