These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 20522723)
21. Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Kuppusamy KT; Ivashuta S; Bucciarelli B; Vance CP; Gantt JS; Vandenbosch KA Plant Physiol; 2009 Nov; 151(3):1155-66. PubMed ID: 19789288 [TBL] [Abstract][Full Text] [Related]
22. Gibberellins Inhibit Flavonoid Biosynthesis and Promote Nitrogen Metabolism in Sun H; Cui H; Zhang J; Kang J; Wang Z; Li M; Yi F; Yang Q; Long R Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502200 [TBL] [Abstract][Full Text] [Related]
23. Lateral root formation and patterning in Medicago truncatula. Herrbach V; Remblière C; Gough C; Bensmihen S J Plant Physiol; 2014 Feb; 171(3-4):301-10. PubMed ID: 24148318 [TBL] [Abstract][Full Text] [Related]
24. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Imin N; Mohd-Radzman NA; Ogilvie HA; Djordjevic MA J Exp Bot; 2013 Dec; 64(17):5395-409. PubMed ID: 24259455 [TBL] [Abstract][Full Text] [Related]
25. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. Ligerot Y; de Saint Germain A; Waldie T; Troadec C; Citerne S; Kadakia N; Pillot JP; Prigge M; Aubert G; Bendahmane A; Leyser O; Estelle M; Debellé F; Rameau C PLoS Genet; 2017 Dec; 13(12):e1007089. PubMed ID: 29220348 [TBL] [Abstract][Full Text] [Related]
26. Factors involved in root formation in Medicago truncatula. Imin N; Nizamidin M; Wu T; Rolfe BG J Exp Bot; 2007; 58(3):439-51. PubMed ID: 17158109 [TBL] [Abstract][Full Text] [Related]
27. The Ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Prayitno J; Rolfe BG; Mathesius U Plant Physiol; 2006 Sep; 142(1):168-80. PubMed ID: 16844840 [TBL] [Abstract][Full Text] [Related]
28. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Riely BK; He H; Venkateshwaran M; Sarma B; Schraiber J; Ané JM; Cook DR Plant J; 2011 Jan; 65(2):230-43. PubMed ID: 21223388 [TBL] [Abstract][Full Text] [Related]
29. The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. Liu W; Chen T; Liu Y; Le QT; Wang R; Lee H; Xiong L Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142550 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Yang Y; Yue R; Sun T; Zhang L; Chen W; Zeng H; Wang H; Shen C Appl Microbiol Biotechnol; 2015 Jan; 99(2):841-54. PubMed ID: 25529315 [TBL] [Abstract][Full Text] [Related]
31. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Effendi Y; Rietz S; Fischer U; Scherer GF Plant J; 2011 Jan; 65(2):282-94. PubMed ID: 21223392 [TBL] [Abstract][Full Text] [Related]
32. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. Hopkins J; Pierre O; Kazmierczak T; Gruber V; Frugier F; Clement M; Frendo P; Herouart D; Boncompagni E Plant Cell Environ; 2014 Mar; 37(3):658-69. PubMed ID: 23961805 [TBL] [Abstract][Full Text] [Related]
33. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. Pii Y; Molesini B; Masiero S; Pandolfini T BMC Plant Biol; 2012 Dec; 12():233. PubMed ID: 23217154 [TBL] [Abstract][Full Text] [Related]
35. Differing requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula. Wasson AP; Ramsay K; Jones MGK; Mathesius U New Phytol; 2009; 183(1):167-179. PubMed ID: 19402878 [TBL] [Abstract][Full Text] [Related]
36. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux. Deinum EE; Kohlen W; Geurts R BMC Plant Biol; 2016 Nov; 16(1):254. PubMed ID: 27846795 [TBL] [Abstract][Full Text] [Related]
37. The root hair "infectome" of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. Breakspear A; Liu C; Roy S; Stacey N; Rogers C; Trick M; Morieri G; Mysore KS; Wen J; Oldroyd GE; Downie JA; Murray JD Plant Cell; 2014 Dec; 26(12):4680-701. PubMed ID: 25527707 [TBL] [Abstract][Full Text] [Related]
38. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Rightmyer AP; Long SR Mol Plant Microbe Interact; 2011 Nov; 24(11):1372-84. PubMed ID: 21809981 [TBL] [Abstract][Full Text] [Related]
39. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula. Mohd-Radzman NA; Binos S; Truong TT; Imin N; Mariani M; Djordjevic MA J Exp Bot; 2015 Aug; 66(17):5289-300. PubMed ID: 25711701 [TBL] [Abstract][Full Text] [Related]
40. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions. Hidalgo-Castellanos J; Duque AS; Burgueño A; Herrera-Cervera JA; Fevereiro P; López-Gómez M J Plant Physiol; 2019 Oct; 241():153034. PubMed ID: 31493718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]