These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20522974)

  • 1. Prevention of stirring-induced microparticle formation in monoclonal antibody solutions.
    Ishikawa T; Kobayashi N; Osawa C; Sawa E; Wakamatsu K
    Biol Pharm Bull; 2010; 33(6):1043-6. PubMed ID: 20522974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No Touching! Abrasion of Adsorbed Protein Is the Root Cause of Subvisible Particle Formation During Stirring.
    Sediq AS; van Duijvenvoorde RB; Jiskoot W; Nejadnik MR
    J Pharm Sci; 2016 Feb; 105(2):519-529. PubMed ID: 26869415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction and analysis of aggregates in a liquid IgG1-antibody formulation.
    Mahler HC; Müller R; Friess W; Delille A; Matheus S
    Eur J Pharm Biopharm; 2005 Apr; 59(3):407-17. PubMed ID: 15760721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
    Binabaji E; Ma J; Zydney AL
    Pharm Res; 2015 Sep; 32(9):3102-9. PubMed ID: 25832501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulky Polar Additives That Greatly Reduce the Viscosity of Concentrated Solutions of Therapeutic Monoclonal Antibodies.
    Larson AM; Weight AK; Love K; Bonificio A; Wescott CR; Klibanov AM
    J Pharm Sci; 2017 May; 106(5):1211-1217. PubMed ID: 28137697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability.
    Miller MA; Khan TA; Kaczorowski KJ; Wilson BK; Dinin AK; Borwankar AU; Rodrigues MA; Truskett TM; Johnston KP; Maynard JA
    J Pharm Sci; 2012 Oct; 101(10):3763-78. PubMed ID: 22777686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies.
    Wang S; Zhang N; Hu T; Dai W; Feng X; Zhang X; Qian F
    Mol Pharm; 2015 Dec; 12(12):4478-87. PubMed ID: 26528726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations into the fouling mechanism of parvovirus filters during filtration of freeze-thawed mAb drug substance solutions.
    Barnard JG; Kahn D; Cetlin D; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Mar; 103(3):890-9. PubMed ID: 24549732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution.
    Liu J; Nguyen MD; Andya JD; Shire SJ
    J Pharm Sci; 2005 Sep; 94(9):1928-40. PubMed ID: 16052543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filling of High-Concentration Monoclonal Antibody Formulations: Investigating Underlying Mechanisms That Affect Precision of Low-Volume Fill by Peristaltic Pump.
    Shieu W; Lamar D; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2016; 70(2):143-56. PubMed ID: 26797970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline.
    Hung JJ; Dear BJ; Dinin AK; Borwankar AU; Mehta SK; Truskett TT; Johnston KP
    Pharm Res; 2018 Apr; 35(7):133. PubMed ID: 29713822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Approach to Mitigate Particle Formation on the Dilution of a Monoclonal Antibody Drug Product in an IV Administration Fluid.
    Zheng S; Adams M; Mantri RV
    J Pharm Sci; 2016 Mar; 105(3):1349-50. PubMed ID: 26886343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing monoclonal antibody formulations in arginine glutamate solutions using
    Kheddo P; Cliff MJ; Uddin S; van der Walle CF; Golovanov AP
    MAbs; 2016 Oct; 8(7):1245-1258. PubMed ID: 27589351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of colloidal stability of high concentration protein formulations.
    Garidel P; Blume A; Wagner M
    Pharm Dev Technol; 2015 May; 20(3):367-74. PubMed ID: 24392929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of a high-concentration monoclonal antibody solution produced by liquid-liquid phase separation.
    Bramham JE; Davies SA; Podmore A; Golovanov AP
    MAbs; 2021; 13(1):1940666. PubMed ID: 34225583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of the final filter of the IV infusion set in intravenous administration of drugs--contamination of injection preparations by insoluble microparticles and its causes.
    Kuramoto K; Shoji T; Nakagawa Y
    Yakugaku Zasshi; 2006 Apr; 126(4):289-95. PubMed ID: 16596019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.