These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20523013)

  • 21. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms.
    Baptista M; Di Maria S; Barros S; Figueira C; Sarmento M; Orvalho L; Vaz P
    Med Phys; 2015 Jul; 42(7):3788-800. PubMed ID: 26133581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technical note: MC-GPU breast dosimetry validations with other Monte Carlo codes and phase space file implementation.
    Massera RT; Thomson RM; Tomal A
    Med Phys; 2022 Jan; 49(1):244-253. PubMed ID: 34778988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo calculation of monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in mammography using a homogeneous breast model.
    Sarno A; Tucciariello RM; Mettivier G; di Franco F; Russo P
    Phys Med Biol; 2019 Jun; 64(12):125012. PubMed ID: 31141793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo simulation for correlation analysis of average glandular dose by breast thickness and glandular ratio in breast tissue.
    Kim ST; Cho JK
    Technol Health Care; 2014; 22(3):345-50. PubMed ID: 24704647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of exposure in mammography: limitations of average glandular dose and proposal of a new quantity.
    Geeraert N; Klausz R; Muller S; Bloch I; Bosmans H
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):342-5. PubMed ID: 25897143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo evaluation of glandular dose in cone-beam X-ray computed tomography dedicated to the breast: Homogeneous and heterogeneous breast models.
    Sarno A; Mettivier G; Tucciariello RM; Bliznakova K; Boone JM; Sechopoulos I; Di Lillo F; Russo P
    Phys Med; 2018 Jul; 51():99-107. PubMed ID: 29885958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breast dosimetry using high-resolution voxel phantoms.
    Dance DR; Hunt RA; Bakic PR; Maidment AD; Sandborg M; Ullman G; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):359-63. PubMed ID: 15933137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation doses in volume-of-interest breast computed tomography--A Monte Carlo simulation study.
    Lai CJ; Zhong Y; Yi Y; Wang T; Shaw CC
    Med Phys; 2015 Jun; 42(6):3063-75. PubMed ID: 26127058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of average glandular dose with modern mammography units for two large groups of patients.
    Klein R; Aichinger H; Dierker J; Jansen JT; Joite-Barfuss S; Säbel M; Schulz-Wendtland R; Zoetelief J
    Phys Med Biol; 1997 Apr; 42(4):651-71. PubMed ID: 9127443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of photoelectric cross section data on systematic uncertainties for Monte Carlo breast dosimetry in mammography.
    Massera RT; Fernández-Varea JM; Tomal A
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33857930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral dependence of glandular tissue dose in screen-film mammography.
    Wu X; Barnes GT; Tucker DM
    Radiology; 1991 Apr; 179(1):143-8. PubMed ID: 2006265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography.
    Wu X; Gingold EL; Barnes GT; Tucker DM
    Radiology; 1994 Oct; 193(1):83-9. PubMed ID: 8090926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography.
    Nishino TK; Wu X; Johnson RF
    AJR Am J Roentgenol; 2005 Oct; 185(4):960-3. PubMed ID: 16177415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-energy contrast-enhanced digital mammography: patient radiation dose estimation using a Monte Carlo code.
    Yakoumakis E; Tzamicha E; Dimitriadis A; Georgiou E; Tsapaki V; Chalazonitis A
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):369-72. PubMed ID: 25836682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of fibroglandular tissue distribution and breast shape in voxelized breast models for dosimetry in mammography.
    Ferrauche G; Tramontin G; Massera RT; Tomal A
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36827710
    [No Abstract]   [Full Text] [Related]  

  • 36. Average glandular dose coefficients for pendant-geometry breast CT using realistic breast phantoms.
    Hernandez AM; Boone JM
    Med Phys; 2017 Oct; 44(10):5096-5105. PubMed ID: 28715130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technique factors and their relationship to radiation dose in pendant geometry breast CT.
    Boone JM; Kwan AL; Seibert JA; Shah N; Lindfors KK; Nelson TR
    Med Phys; 2005 Dec; 32(12):3767-76. PubMed ID: 16475776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computation of the glandular radiation dose in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi C; Karellas A
    Med Phys; 2007 Jan; 34(1):221-32. PubMed ID: 17278508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patient dose in digital mammography.
    Chevalier M; Morán P; Ten JI; Fernández Soto JM; Cepeda T; Vañó E
    Med Phys; 2004 Sep; 31(9):2471-9. PubMed ID: 15487727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of absorbed dose in mammography: monte carlo simulation studies.
    Doi K; Chan HP
    Radiology; 1980 Apr; 135(1):199-208. PubMed ID: 7360961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.