These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 20523421)

  • 1. Optical fiber probe to measure local void fraction profiles.
    Morris D; Teyssedou A; Lapierre J; Tapucu A
    Appl Opt; 1987 Nov; 26(21):4660-4. PubMed ID: 20523421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical probe for local void fraction and interface velocity measurements.
    Abuaf N; Jones OC; Zimmer GA
    Rev Sci Instrum; 1978 Aug; 49(8):1090. PubMed ID: 18699258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer.
    Lim HJ; Chang KA; Su CB; Chen CY
    Rev Sci Instrum; 2008 Dec; 79(12):125105. PubMed ID: 19123590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-Optic Probe Array for Measuring Spatial Distributions of Air Volume Fractions in Bubbly Flows.
    Tien TM; Huang CJ; Lee CH; Liu KW
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement.
    Sakamoto A; Saito T
    Rev Sci Instrum; 2012 Jul; 83(7):075107. PubMed ID: 22852724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical probe for high-temperature local void fraction determination.
    Vince MA; Breed H; Krycuk G; Lahey RT
    Appl Opt; 1982 Mar; 21(5):886-92. PubMed ID: 20372557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radio-frequency probe for bubble size and velocity measurements.
    Abuaf N; Feierabend TP; Zimmer GA; Jones OC
    Rev Sci Instrum; 1979 Oct; 50(10):1260. PubMed ID: 18699371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.
    Saito Y; Mishima K; Matsubayashi M
    Appl Radiat Isot; 2004 Oct; 61(4):667-74. PubMed ID: 15246416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
    Li H; Ji H; Huang Z; Wang B; Li H; Wu G
    Sensors (Basel); 2016 Jan; 16(2):159. PubMed ID: 26828488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.
    Masala T; Harvel G; Chang JS
    Rev Sci Instrum; 2007 Nov; 78(11):114901. PubMed ID: 18052496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Void Fraction Measurement of Oil-Gas-Water Three-Phase Flow Using Mutually Perpendicular Ultrasonic Sensor.
    Ren W; Zhao A; Jin N
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo Doppler shift measurements using multimode fiber-optic catheters.
    Tjin SC; Ng SL; Soo KT
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1272-8. PubMed ID: 9775541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger.
    Asano H; Takenaka N; Fujii T; Maeda N
    Appl Radiat Isot; 2004 Oct; 61(4):707-13. PubMed ID: 15246421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory-scale application of fiber optic transflection dip probe (FOTDP) for in situ monitoring of gas phase ozone in unsaturated porous media.
    Jung H; Choi H; Kim J; Schwartz FW
    J Contam Hydrol; 2006 Jan; 82(1-2):133-44. PubMed ID: 16242808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO
    Wu H; Duan Q
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes.
    Wang R; Wang J; Hao F; Zhang M; Tian Q
    Appl Opt; 2010 Apr; 49(10):1845-8. PubMed ID: 20357868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local data of heat flux, wall temperature and the void phase along the boiling curve during vertical subcooled flow boiling of refrigerant Novec 649 at a copper wall.
    Bruder M; Sembach L; Krumova V; Sattelmayer T
    Data Brief; 2018 Dec; 21():1415-1429. PubMed ID: 30456266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InGaN-based light-emitting diodes with an embedded conical air-voids structure.
    Huang YC; Lin CF; Chen SH; Dai JJ; Wang GM; Huang KP; Chen KT; Hsu YH
    Opt Express; 2011 Jan; 19 Suppl 1():A57-63. PubMed ID: 21263713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image processing methods to obtain symmetrical distribution from projection image.
    Asano H; Takenaka N; Fujii T; Nakamatsu E; Tagami Y; Takeshima K
    Appl Radiat Isot; 2004 Oct; 61(4):625-30. PubMed ID: 15246409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.