These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20523423)

  • 1. Optical glass fabrication technology. 1: Fine grinding mechanism using bound diamond abrasives.
    Edwards DF; Hed PP
    Appl Opt; 1987 Nov; 26(21):4670-6. PubMed ID: 20523423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twyman effect mechanics in grinding and microgrinding.
    Lambropoulos JC; Xu S; Fang T; Golini D
    Appl Opt; 1996 Oct; 35(28):5704-13. PubMed ID: 21127579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage.
    Hed PP; Edwards DF
    Appl Opt; 1987 Nov; 26(21):4677-80. PubMed ID: 20523424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface microroughness of optical glasses under deterministic microgrinding.
    Lambropoulos JC; Fang T; Funkenbusch PD; Jacobs SD; Cumbo MJ; Golini D
    Appl Opt; 1996 Aug; 35(22):4448-62. PubMed ID: 21102859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.
    Chang CW; Waddell JN; Lyons KM; Swain MV
    J Prosthodont; 2011 Dec; 20(8):613-20. PubMed ID: 22017480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grinding process for beveling and lapping operations in lens manufacturing.
    Farsakoğlu OF; Zengin DM; Kocaba H
    Appl Opt; 2000 Apr; 39(10):1541-8. PubMed ID: 18345049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics of loose abrasive microgrinding.
    Golini D; Jacobs SD
    Appl Opt; 1991 Jul; 30(19):2761-77. PubMed ID: 20700273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards predicting removal rate and surface roughness during grinding of optical materials.
    Suratwala T; Steele R; Wong L; Miller P; Feigenbaum E; Shen N; Ray N; Feit M
    Appl Opt; 2019 Apr; 58(10):2490-2499. PubMed ID: 31045043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Grinding of titanium. 2. Commercial vitrified wheels made of alumina abrasives].
    Miyakawa O; Watanabe K; Okawa S; Nakano S; Shiokawa N; Kobayashi M; Tamura H
    Shika Zairyo Kikai; 1990 Jan; 9(1):42-52. PubMed ID: 2134812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface stresses of mixed-mode grinding materials on borosilicate glass.
    Johnson JB; Parks RE; Burge JH
    Appl Opt; 2012 Jun; 51(18):4151-6. PubMed ID: 22722292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the effects of handpiece speed, abrasive characteristics, and polishing load on the flexural strength of polished ceramics.
    Ahmad R; Morgano SM; Wu BM; Giordano RA
    J Prosthet Dent; 2005 Nov; 94(5):421-9. PubMed ID: 16275301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Manufacture of diamond blades via microsystem technology].
    Spraul CW; Ertl S; Strobel S; Gretzschel R; Schirmer E; Rösch R; Lingenfelder C; Lang GK
    Klin Monbl Augenheilkd; 2003 Apr; 220(4):229-34. PubMed ID: 12695964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets.
    Li Y; Wu Y; Wang J; Yang W; Guo Y; Xu Q
    Opt Express; 2012 Jan; 20(1):568-75. PubMed ID: 22274378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for evaluating subsurface damage in optical glass.
    Li Y; Huang H; Xie R; Li H; Deng Y; Chen X; Wang J; Xu Q; Yang W; Guo Y
    Opt Express; 2010 Aug; 18(16):17180-6. PubMed ID: 20721106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Grinding of titanium. 1. Commercial and experimental wheels made of silicon carbide abrasives].
    Miyakawa O; Watanabe K; Okawa S; Nakano S; Shiokawa N; Kobayashi M; Tamura H
    Shika Zairyo Kikai; 1990 Jan; 9(1):30-41. PubMed ID: 2134811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Abrasive-Type Influence on the Effectiveness of Rotary Cleaning of Machine Parts with Complex Geometric Features.
    Korga S; Żyła K; Józwik J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33203134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal rate model for magnetorheological finishing of glass.
    Degroote JE; Marino AE; Wilson JP; Bishop AL; Lambropoulos JC; Jacobs SD
    Appl Opt; 2007 Nov; 46(32):7927-41. PubMed ID: 17994145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical model for predicting grinding rates.
    Wiese GE; Wagner RE
    Appl Opt; 1974 Nov; 13(11):2719-22. PubMed ID: 20134761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive.
    Wang X; Zhang X
    Appl Opt; 2009 Feb; 48(5):904-10. PubMed ID: 19209202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of equivalent abrasive grit sizes utilizing differing polishing motions on selected restorative materials.
    Fruits TJ; Miranda FJ; Coury TL
    Quintessence Int; 1996 Apr; 27(4):279-85. PubMed ID: 8941847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.