These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20523544)

  • 1. Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence.
    Hiller B; Hanson RK
    Appl Opt; 1988 Jan; 27(1):33-48. PubMed ID: 20523544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO.
    Paul PH; Lee MP; Hanson RK
    Opt Lett; 1989 May; 14(9):417-9. PubMed ID: 19749938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows.
    Hiller B; McDaniel JC; Rea EC; Hanson RK
    Opt Lett; 1983 Sep; 8(9):474-6. PubMed ID: 19718152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet.
    Rosa MD; Chang AY; Hanson RK
    Appl Opt; 1993 Jul; 32(21):4074-87. PubMed ID: 20830049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and pressure imaging using infrared planar laser-induced fluorescence.
    Rothamer DA; Hanson RK
    Appl Opt; 2010 Nov; 49(33):6436-47. PubMed ID: 21102669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO.
    Lee MP; McMillin BK; Hanson RK
    Appl Opt; 1993 Sep; 32(27):5379-96. PubMed ID: 20856348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study.
    Sánchez-González R; Bowersox RD; North SW
    Appl Opt; 2012 Mar; 51(9):1216-28. PubMed ID: 22441464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow.
    McMillin BK; Palmer JL; Hanson RK
    Appl Opt; 1993 Dec; 32(36):7532-45. PubMed ID: 20861973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-frequency laser-induced fluorescence technique for rapid velocity-field measurements in gas flows.
    Hiller B; Hanson RK
    Opt Lett; 1985 May; 10(5):206-8. PubMed ID: 19724395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence.
    McDaniel JC; Hiller B; Hanson RK
    Opt Lett; 1983 Jan; 8(1):51-3. PubMed ID: 19714132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows.
    Davidson DF; Chang AY; Dirosa MD; Hanson RK
    Appl Opt; 1991 Jun; 30(18):2598-608. PubMed ID: 20700249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO.
    Chang AY; Dirosa MD; Davidson DF; Hanson RK
    Appl Opt; 1991 Jul; 30(21):3011-22. PubMed ID: 20706349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of azimuthal ion velocity profiles using Mach probes, time delay estimation, and laser induced fluorescence in a linear plasma device.
    Thakur SC; McCarren D; Lee T; Fedorczak N; Manz P; Scime EE; Tynan GR; Xu M; Yu J
    Rev Sci Instrum; 2012 Oct; 83(10):10D708. PubMed ID: 23126882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurements of velocity, temperature, and pressure using rapid cw wavelength-modulation laser-induced fluorescence of OH.
    Chang AY; Battles BE; Hanson RK
    Opt Lett; 1990 Jun; 15(12):706-8. PubMed ID: 19768054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique.
    Sánchez-González R; Srinivasan R; Bowersox RD; North SW
    Opt Lett; 2011 Jan; 36(2):196-8. PubMed ID: 21263498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gasdynamic focusing in an underexpanded jet.
    Muenchausen RE; Garcia AR; Keller RA; Nogar NS
    Appl Opt; 1989 Aug; 28(15):3220-5. PubMed ID: 20555672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles.
    Phillips GT; Perram GP
    Appl Opt; 2009 Sep; 48(26):4917-21. PubMed ID: 19745854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kr-PLIF for scalar imaging in supersonic flows.
    Narayanaswamy V; Burns R; Clemens NT
    Opt Lett; 2011 Nov; 36(21):4185-7. PubMed ID: 22048359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique.
    Pan F; Sánchez-González R; McIlvoy MH; Bowersox RD; North SW
    Opt Lett; 2016 Apr; 41(7):1376-9. PubMed ID: 27192240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrationally excited NO tagging by NO(A²∑⁺) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows.
    Sánchez-González R; Bowersox RD; North SW
    Opt Lett; 2014 May; 39(9):2771-4. PubMed ID: 24784099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.