These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20523544)

  • 21. Visualization of turbulent flame fronts with planar laser-induced fluorescence.
    Kychakoff G; Howe RD; Hanson RK; Drake MC; Pitz RW; Lapp M; Penney CM
    Science; 1984 Apr; 224(4647):382-4. PubMed ID: 17741216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous velocity and pressure measurements using luminescent microspheres.
    Kimura F; McCann J; Khalil GE; Dabiri D; Xia Y; Callis JB
    Rev Sci Instrum; 2010 Jun; 81(6):064101. PubMed ID: 20590251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows.
    Philippe LC; Hanson RK
    Appl Opt; 1993 Oct; 32(30):6090-103. PubMed ID: 20856437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release.
    Knapp M; Luczak A; Schlüter H; Beushausen V; Hentschel W; Andresen P
    Appl Opt; 1996 Jul; 35(21):4009-17. PubMed ID: 21102804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser Doppler detection systems for gas velocity measurement.
    Huffaker RM
    Appl Opt; 1970 May; 9(5):1026-39. PubMed ID: 20076326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows.
    Seitzman JM; Hanson RK; Debarber PA; Hess CF
    Appl Opt; 1994 Jun; 33(18):4000-12. PubMed ID: 20935747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.
    Paci P; Zvinevich Y; Tanimura S; Wyslouzil BE; Zahniser M; Shorter J; Nelson D; McManus B
    J Chem Phys; 2004 Nov; 121(20):9964-70. PubMed ID: 15549871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence.
    Hartfield RJ; Abbitt Iii JD; McDaniel JC
    Opt Lett; 1989 Aug; 14(16):850-2. PubMed ID: 19752989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method for planar measurement of temperature in compressible flow using two-line laser-induced iodine fluorescence.
    Ni-Imi T; Fujimoto T; Shimizu N
    Opt Lett; 1990 Aug; 15(16):918-20. PubMed ID: 19770953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of absorption lines for I(2)-planar laser-induced fluorescence measurement of temperature in a compressible flow.
    Ni-Imi T; Fujimoto T; Ishida T
    Appl Opt; 1995 Sep; 34(27):6275-81. PubMed ID: 21060471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.
    Hart RC; Herring GC; Balla RJ
    Opt Lett; 2007 Jun; 32(12):1689-91. PubMed ID: 17572748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncertainty in velocity measurement based on diode-laser absorption in nonuniform flows.
    Li F; Yu X; Cai W; Ma L
    Appl Opt; 2012 Jul; 51(20):4788-97. PubMed ID: 22781256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence.
    Hartfield RJ; Hollo SD; McDaniel JC
    Opt Lett; 1991 Jan; 16(2):106-8. PubMed ID: 19773852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence.
    Palmer JL; Hanson RK
    Appl Opt; 1996 Jan; 35(3):485-99. PubMed ID: 21069034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-component flow velocity measurements with stereoscopic picosecond laser electronic excitation tagging.
    Russell C; Jiang N; Danehy P; Zhang Z; Roy S
    Appl Opt; 2021 May; 60(15):C121-C130. PubMed ID: 34143119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.
    Storm PV; Cappelli MA
    Appl Opt; 1996 Aug; 35(24):4913-8. PubMed ID: 21102917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous multiple species detection in a flame using laser-induced fluorescence.
    Westblom U; Aldén M
    Appl Opt; 1989 Jul; 28(13):2592-9. PubMed ID: 20555565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous multiple species detection in a flame using laser-induced fluorescence: Errata.
    Westblom U; Aldén M
    Appl Opt; 1990 Nov; 29(33):4844-51. PubMed ID: 20577478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor.
    Arroyo MP; Langlois S; Hanson RK
    Appl Opt; 1994 May; 33(15):3296-307. PubMed ID: 20885702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time resolved velocity measurements of unsteady systems using spiral imaging.
    Tayler AB; Holland DJ; Sederman AJ; Gladden LF
    J Magn Reson; 2011 Jul; 211(1):1-10. PubMed ID: 21514194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.