These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 20524112)
1. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Thanh TN; Jürgen B; Bauch M; Liebeke M; Lalk M; Ehrenreich A; Evers S; Maurer KH; Antelmann H; Ernst F; Homuth G; Hecker M; Schweder T Appl Microbiol Biotechnol; 2010 Aug; 87(6):2227-35. PubMed ID: 20524112 [TBL] [Abstract][Full Text] [Related]
2. An acetoin-regulated expression system of Bacillus subtilis. Silbersack J; Jürgen B; Hecker M; Schneidinger B; Schmuck R; Schweder T Appl Microbiol Biotechnol; 2006 Dec; 73(4):895-903. PubMed ID: 16944132 [TBL] [Abstract][Full Text] [Related]
3. Transcription in the acetoin catabolic pathway is regulated by AcoR and CcpA in Bacillus thuringiensis. Peng Q; Zhao X; Wen J; Huang M; Zhang J; Song F Microbiol Res; 2020 May; 235():126438. PubMed ID: 32088504 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Ali NO; Bignon J; Rapoport G; Debarbouille M J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109 [TBL] [Abstract][Full Text] [Related]
5. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Huo Y; Zhan Y; Wang Q; Li S; Yang S; Nomura CT; Wang C; Chen S Bioprocess Biosyst Eng; 2018 Jan; 41(1):87-96. PubMed ID: 29026998 [TBL] [Abstract][Full Text] [Related]
6. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Zhang Y; Li S; Liu L; Wu J Bioresour Technol; 2013 Feb; 130():256-60. PubMed ID: 23306133 [TBL] [Abstract][Full Text] [Related]
7. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Grundy FJ; Waters DA; Takova TY; Henkin TM Mol Microbiol; 1993 Oct; 10(2):259-71. PubMed ID: 7934817 [TBL] [Abstract][Full Text] [Related]
8. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation. Meng W; Xiao D; Wang R World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Wang M; Fu J; Zhang X; Chen T Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279 [TBL] [Abstract][Full Text] [Related]
12. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. Yang TH; Rathnasingh C; Lee HJ; Seung D J Biotechnol; 2014 Feb; 172():59-66. PubMed ID: 24389066 [TBL] [Abstract][Full Text] [Related]
13. Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Biswas R; Yamaoka M; Nakayama H; Kondo T; Yoshida K; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2012 May; 94(3):651-8. PubMed ID: 22361854 [TBL] [Abstract][Full Text] [Related]
14. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis. Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. Huang M; Oppermann FB; Steinbüchel A FEMS Microbiol Lett; 1994 Dec; 124(2):141-50. PubMed ID: 7813883 [TBL] [Abstract][Full Text] [Related]
16. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Cai D; He P; Lu X; Zhu C; Zhu J; Zhan Y; Wang Q; Wen Z; Chen S Sci Rep; 2017 Feb; 7():43404. PubMed ID: 28230096 [TBL] [Abstract][Full Text] [Related]
17. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Geckil H; Barak Z; Chipman DM; Erenler SO; Webster DA; Stark BC Bioprocess Biosyst Eng; 2004 Oct; 26(5):325-30. PubMed ID: 15309606 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Tan Y; Liu ZY; Liu Z; Li FL Enzyme Microb Technol; 2015 Nov; 79-80():1-7. PubMed ID: 26320708 [TBL] [Abstract][Full Text] [Related]
20. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. Renna MC; Najimudin N; Winik LR; Zahler SA J Bacteriol; 1993 Jun; 175(12):3863-75. PubMed ID: 7685336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]