These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 205242)
21. Distinct structures and environments for the three hemes of the cytochrome bc1 complex from Rhodospirillum rubrum. A resonance Raman study using B-band excitations. Le Moigne C; Schoepp B; Othman S; Verméglio A; Desbois A Biochemistry; 1999 Jan; 38(3):1066-76. PubMed ID: 9894003 [TBL] [Abstract][Full Text] [Related]
22. Probing protein-cofactor interactions in the terminal oxidases by second derivative spectroscopy: study of bacterial enzymes with cofactor substitutions and heme A model compounds. Felsch JS; Horvath MP; Gursky S; Hobaugh MR; Goudreau PN; Fee JA; Morgan WT; Admiraal SJ; Ikeda-Saito M; Fujiwara T Protein Sci; 1994 Nov; 3(11):2097-103. PubMed ID: 7703856 [TBL] [Abstract][Full Text] [Related]
23. Resonance Raman spectra for catalytic intermediates of cytochrome c oxidase detected with a mixed flow transient apparatus. Ogura T; Yoshikawa S; Kitagawa T Biochim Biophys Acta; 1985 Nov; 832(2):220-3. PubMed ID: 2998474 [TBL] [Abstract][Full Text] [Related]
24. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes. Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496 [TBL] [Abstract][Full Text] [Related]
25. Resonance Raman applications in investigations of cytochrome c oxidase. Ogura T Biochim Biophys Acta; 2012 Apr; 1817(4):575-8. PubMed ID: 22172733 [TBL] [Abstract][Full Text] [Related]
26. Photoreactions of cytochrome C oxidase. Winterle JS; Einarsdóttir O Photochem Photobiol; 2006; 82(3):711-9. PubMed ID: 16789843 [TBL] [Abstract][Full Text] [Related]
27. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions. Webster GT; McNaughton D; Wood BR J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036 [TBL] [Abstract][Full Text] [Related]
28. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857 [TBL] [Abstract][Full Text] [Related]
29. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
30. Noninvasive auto-photoreduction used as a tool for studying structural changes in heme-copper oxidases by FTIR spectroscopy. Bettinger K; Prutsch A; Vogtt K; Lübben M Biophys J; 2004 May; 86(5):3230-40. PubMed ID: 15111436 [TBL] [Abstract][Full Text] [Related]
31. Kinetic studies on cytochrome c oxidase by combined epr and reflectance spectroscopy after rapid freezing. Beinert H; Hansen RE; Hartzell CR Biochim Biophys Acta; 1976 Feb; 423(2):339-55. PubMed ID: 2321 [TBL] [Abstract][Full Text] [Related]
32. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. Wood BR; Hammer L; Davis L; McNaughton D J Biomed Opt; 2005; 10(1):14005. PubMed ID: 15847586 [TBL] [Abstract][Full Text] [Related]
33. Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli. Bloch DA; Borisov VB; Mogi T; Verkhovsky MI Biochim Biophys Acta; 2009 Oct; 1787(10):1246-53. PubMed ID: 19450539 [TBL] [Abstract][Full Text] [Related]
34. Resonance Raman/absorption characterization of the oxo intermediates of cytochrome c oxidase generated in its reaction with hydrogen peroxide: pH and H2O2 concentration dependence. Proshlyakov DA; Ogura T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T Biochemistry; 1996 Jul; 35(26):8580-6. PubMed ID: 8679619 [TBL] [Abstract][Full Text] [Related]
35. Response of Heme Symmetry to the Redox State of Bovine Cytochrome c Oxidase. Kopcova K; Blascakova L; Kozar T; Jancura D; Fabian M Biochemistry; 2018 Jul; 57(28):4105-4113. PubMed ID: 29901388 [TBL] [Abstract][Full Text] [Related]
36. Resonance raman studies of a c type algal cytochrome. Deuterium shifts and a comparison with mammalian cytochrome c. Yamamoto T; Palmer G; Crespi H Biochim Biophys Acta; 1976 Jul; 439(1):232-9. PubMed ID: 182237 [TBL] [Abstract][Full Text] [Related]
37. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction. Konev SV; Beljanovich LM; Rudenok AN Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650 [TBL] [Abstract][Full Text] [Related]
38. The active site structure of ba3 oxidase from Thermus thermophilus studied by resonance raman spectroscopy. Gerscher S; Hildebrandt P; Buse G; Soulimane T Biospectroscopy; 1999; 5(5 Suppl):S53-63. PubMed ID: 10512538 [TBL] [Abstract][Full Text] [Related]
40. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans. Lynch SR; Copeland RA Protein Sci; 1992 Nov; 1(11):1428-34. PubMed ID: 1338946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]