These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 205242)
41. Fourier transform infrared study of the cation radical of P680 in the photosystem II reaction center: evidence for charge delocalization on the chlorophyll dimer. Noguchi T; Tomo T; Inoue Y Biochemistry; 1998 Sep; 37(39):13614-25. PubMed ID: 9753448 [TBL] [Abstract][Full Text] [Related]
42. Redox induced protonation of heme propionates in cytochrome c oxidase: Insights from surface enhanced resonance Raman spectroscopy and QM/MM calculations. Sezer M; Woelke AL; Knapp EW; Schlesinger R; Mroginski MA; Weidinger IM Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):103-108. PubMed ID: 27810193 [TBL] [Abstract][Full Text] [Related]
43. Resonance Raman spectra and optical properties of oxidized cytochrome oxidase. Babcock GT; Salmeen I Biochemistry; 1979 Jun; 18(12):2493-8. PubMed ID: 221009 [No Abstract] [Full Text] [Related]
44. Spectroscopic studies of rat liver acyl-CoA oxidase with reference to recognition and activation of substrate. Tamaoki H; Setoyama C; Miura R; Hazekawa I; Nishina Y; Shiga K J Biochem; 1997 Jun; 121(6):1139-46. PubMed ID: 9354389 [TBL] [Abstract][Full Text] [Related]
45. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart. Dyuba AV; Vygodina TV; Konstantinov AA Biochemistry (Mosc); 2013 Dec; 78(12):1358-65. PubMed ID: 24460970 [TBL] [Abstract][Full Text] [Related]
46. Structural analysis of myeloperoxidase by resonance Raman spectroscopy. Sibbett SS; Hurst JK Biochemistry; 1984 Jun; 23(13):3007-13. PubMed ID: 6087886 [TBL] [Abstract][Full Text] [Related]
47. Photoperturbation of the heme a3-CuB binuclear center of cytochrome c oxidase CO complex observed by Fourier transform infrared spectroscopy. Park S; Pan LP; Chan SI; Alben JO Biophys J; 1996 Aug; 71(2):1036-47. PubMed ID: 8842240 [TBL] [Abstract][Full Text] [Related]
48. The second derivative electronic absorption spectrum of cytochrome c oxidase in the Soret region. Horvath MP; Copeland RA; Makinen MW Biophys J; 1999 Sep; 77(3):1694-711. PubMed ID: 10465779 [TBL] [Abstract][Full Text] [Related]
49. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various C-type cytochromes. Kitagawa T; Kyogoku Y; Iizuka T; Ikeda-Saito M; Yamanaka T J Biochem; 1975 Oct; 78(4):719-28. PubMed ID: 2584 [TBL] [Abstract][Full Text] [Related]
50. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Hunter DJ; Oganesyan VS; Salerno JC; Butler CS; Ingledew WJ; Thomson AJ Biophys J; 2000 Jan; 78(1):439-50. PubMed ID: 10620307 [TBL] [Abstract][Full Text] [Related]
51. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus. Slutter CE; Sanders D; Wittung P; Malmström BG; Aasa R; Richards JH; Gray HB; Fee JA Biochemistry; 1996 Mar; 35(11):3387-95. PubMed ID: 8639488 [TBL] [Abstract][Full Text] [Related]
52. [Effect of hydrazine on properties of cytochrome oxidase]. Markosian KA; Paĭtian NA; Nalbandian RM Biokhimiia; 1988 Jul; 53(7):1136-43. PubMed ID: 2846078 [TBL] [Abstract][Full Text] [Related]
53. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme. Fee JA; Todaro TR; Luna E; Sanders D; Hunsicker-Wang LM; Patel KM; Bren KL; Gomez-Moran E; Hill MG; Ai J; Loehr TM; Oertling WA; Williams PA; Stout CD; McRee D; Pastuszyn A Biochemistry; 2004 Sep; 43(38):12162-76. PubMed ID: 15379555 [TBL] [Abstract][Full Text] [Related]
54. Analysis of structure-function relationships in cytochrome c oxidase and its biomimetic analogs via resonance Raman and surface enhanced resonance Raman spectroscopies. Weidinger IM Biochim Biophys Acta; 2015 Jan; 1847(1):119-25. PubMed ID: 25223590 [TBL] [Abstract][Full Text] [Related]
55. Resonance Raman characterization of the P intermediate in the reaction of bovine cytochrome c oxidase. Ogura T; Kitagawa T Biochim Biophys Acta; 2004 Apr; 1655(1-3):290-7. PubMed ID: 15100044 [TBL] [Abstract][Full Text] [Related]
56. Isolation and characterization of vibrational spectra of individual heme active sites in cytochrome bc1 complexes from Rhodobacter capsulatus. Gao F; Qin H; Simpson MC; Shelnutt JA; Knaff DB; Ondrias MR Biochemistry; 1996 Oct; 35(39):12812-9. PubMed ID: 8841124 [TBL] [Abstract][Full Text] [Related]
57. Formation and reduction of a 'peroxy' intermediate of cytochrome c oxidase by hydrogen peroxide. Wrigglesworth JM Biochem J; 1984 Feb; 217(3):715-9. PubMed ID: 6324745 [TBL] [Abstract][Full Text] [Related]
58. Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm. Karu TI; Pyatibrat LV; Kolyakov SF; Afanasyeva NI Photomed Laser Surg; 2008 Dec; 26(6):593-9. PubMed ID: 19099388 [TBL] [Abstract][Full Text] [Related]
59. NIR Raman spectra of whole human blood: effects of laser-induced and in vitro hemoglobin denaturation. Lemler P; Premasiri WR; DelMonaco A; Ziegler LD Anal Bioanal Chem; 2014 Jan; 406(1):193-200. PubMed ID: 24162820 [TBL] [Abstract][Full Text] [Related]
60. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods. Dodson ED; Zhao XJ; Caughey WS; Elliott CM Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]