These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20524217)

  • 21. Transcriptome-Wide Detection of 5-Methylcytosine by Bisulfite Sequencing.
    Amort T; Sun X; Khokhlova-Cubberley D; Lusser A
    Methods Mol Biol; 2017; 1562():123-142. PubMed ID: 28349458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. irCLASH reveals RNA substrates recognized by human ADARs.
    Song Y; Yang W; Fu Q; Wu L; Zhao X; Zhang Y; Zhang R
    Nat Struct Mol Biol; 2020 Apr; 27(4):351-362. PubMed ID: 32203492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of N
    Zhou KI; Liu N; Pan T
    Methods; 2017 Aug; 126():105-111. PubMed ID: 28454774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.
    Hogan DJ; Riordan DP; Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2008 Oct; 6(10):e255. PubMed ID: 18959479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.
    Boivin V; Deschamps-Francoeur G; Couture S; Nottingham RM; Bouchard-Bourelle P; Lambowitz AM; Scott MS; Abou-Elela S
    RNA; 2018 Jul; 24(7):950-965. PubMed ID: 29703781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome-Wide Mapping of Protein-RNA Interactions.
    Bi X; Shen X
    Methods Mol Biol; 2020; 2161():161-173. PubMed ID: 32681512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping the small RNA interactome in bacteria using RIL-seq.
    Melamed S; Faigenbaum-Romm R; Peer A; Reiss N; Shechter O; Bar A; Altuvia Y; Argaman L; Margalit H
    Nat Protoc; 2018 Jan; 13(1):1-33. PubMed ID: 29215635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq.
    Heidrich N; Bauriedl S; Barquist L; Li L; Schoen C; Vogel J
    Nucleic Acids Res; 2017 Jun; 45(10):6147-6167. PubMed ID: 28334889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants.
    Carbonell A
    Methods Mol Biol; 2017; 1640():93-112. PubMed ID: 28608336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC).
    Sy B; Wong J; Granneman S; Tollervey D; Gally D; Tree JJ
    Methods Mol Biol; 2018; 1737():251-272. PubMed ID: 29484598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying mRNAs bound by RNA-binding proteins using affinity purification and differential display.
    Rodgers ND; Jiao X; Kiledjian M
    Methods; 2002 Feb; 26(2):115-22. PubMed ID: 12054888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites.
    Benhalevy D; McFarland HL; Sarshad AA; Hafner M
    Methods; 2017 Apr; 118-119():41-49. PubMed ID: 27871973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes.
    Slobodin B; Gerst JE
    Methods Mol Biol; 2011; 714():387-406. PubMed ID: 21431754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis.
    Bersani C; Huss M; Giacomello S; Xu LD; Bianchi J; Eriksson S; Jerhammar F; Alexeyenko A; Vilborg A; Lundeberg J; Lui WO; Wiman KG
    Oncotarget; 2016 Jan; 7(2):1895-911. PubMed ID: 26672765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.
    González-Buendía E; Saldaña-Meyer R; Meier K; Recillas-Targa F
    Methods Mol Biol; 2015; 1288():413-28. PubMed ID: 25827894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity.
    Jung E; Seong Y; Jeon B; Song H; Kwon YS
    Biochim Biophys Acta Gene Regul Mech; 2017 Nov; 1860(11):1148-1158. PubMed ID: 29031931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of directly captured microRNA targets reveals the impact of microRNAs on mammalian transcriptome.
    Bjerke GA; Yi R
    RNA; 2020 Mar; 26(3):306-323. PubMed ID: 31900330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissecting noncoding and pathogen RNA-protein interactomes.
    Flynn RA; Martin L; Spitale RC; Do BT; Sagan SM; Zarnegar B; Qu K; Khavari PA; Quake SR; Sarnow P; Chang HY
    RNA; 2015 Jan; 21(1):135-43. PubMed ID: 25411354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.
    Gaglia MM; Rycroft CH; Glaunsinger BA
    PLoS Pathog; 2015 Dec; 11(12):e1005305. PubMed ID: 26646420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of substrate-bound SMG1-8-9 kinase complex reveals molecular basis for phosphorylation specificity.
    Langer LM; Gat Y; Bonneau F; Conti E
    Elife; 2020 May; 9():. PubMed ID: 32469312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.