BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 20524629)

  • 21. Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates.
    Lu L; Eychmüller A; Kobayashi A; Hirano Y; Yoshida K; Kikkawa Y; Tawa K; Ozaki Y
    Langmuir; 2006 Mar; 22(6):2605-9. PubMed ID: 16519460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-enhanced Raman scattering of a series of n-hydroxybenzoic acids (n = P, M and O) on the silver nano-particles.
    Wu D; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1845-52. PubMed ID: 15248959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles.
    Yang KH; Chang CM
    Anal Chim Acta; 2012 Jun; 729():1-6. PubMed ID: 22595427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities.
    Yang KH; Liu YC; Yu CC; Chen BC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):383-8. PubMed ID: 21145781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces.
    Williamson TL; Guo X; Zukoski A; Sood A; Díaz DJ; Bohn PW
    J Phys Chem B; 2005 Nov; 109(43):20186-91. PubMed ID: 16853609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles.
    Chen J; Mårtensson T; Dick KA; Deppert K; Xu HQ; Samuelson L; Xu H
    Nanotechnology; 2008 Jul; 19(27):275712. PubMed ID: 21828724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New strategy for ready application of surface-enhanced resonance Raman scattering/surface-enhanced Raman scattering to chemical analysis of organic films on dielectric substrates.
    Kim K; Kim NH; Park HK; Ha YS; Han HS
    Appl Spectrosc; 2005 Oct; 59(10):1217-21. PubMed ID: 18028618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved stabilities on surface-enhanced Raman scattering-active Ag/Al2O3 films on substrates.
    Mai FD; Yang KH; Liu YC; Hsu TC
    Analyst; 2012 Dec; 137(24):5906-12. PubMed ID: 23115774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film.
    Wang J; Qiu C; Mu X; Pang H; Chen X; Liu D
    Talanta; 2020 Apr; 210():120631. PubMed ID: 31987213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The investigation of a series of n-hydroxybenzoic acids (n=p, m, o) on a new surface enhanced Raman scattering active substrate.
    Wang LR; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):958-63. PubMed ID: 16303634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S; Wu P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.
    Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ
    Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method.
    Xu D; Dong Z; Sun JL
    Nanotechnology; 2012 Mar; 23(12):125705. PubMed ID: 22407165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple and highly efficient route to the synthesis of NaLnF4-Ag hybrid nanorice with excellent SERS performances.
    Zhang M; Zhao A; Li D; Sun H; Wang D; Guo H; Gao Q; Gan Z; Tao W
    Analyst; 2012 Oct; 137(19):4584-92. PubMed ID: 22898563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag nanostructures assembled on magnetic particles for ready SERS-based detection of dissolved chemical species.
    Kim K; Jang HJ; Shin KS
    Analyst; 2009 Feb; 134(2):308-13. PubMed ID: 19173054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.