BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 20524657)

  • 1. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions.
    Jiang J; Xiong YL; Chen J
    J Agric Food Chem; 2010 Jul; 58(13):8035-42. PubMed ID: 20524657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of β-conglycinin and glycinin subunits in the pH-shifting-induced structural and physicochemical changes of soy protein isolate.
    Jiang J; Xiong YL; Chen J
    J Food Sci; 2011 Mar; 76(2):C293-302. PubMed ID: 21535749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.
    Keerati-U-Rai M; Corredig M
    J Agric Food Chem; 2009 May; 57(9):3556-62. PubMed ID: 19415926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0.
    Guo J; Yang XQ; He XT; Wu NN; Wang JM; Gu W; Zhang YY
    J Agric Food Chem; 2012 Apr; 60(14):3782-91. PubMed ID: 22429197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility of soy lipophilic proteins: comparison with other soy protein fractions.
    Sirison J; Matsumiya K; Samoto M; Hidaka H; Kouno M; Matsumura Y
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):790-802. PubMed ID: 28300503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes.
    Jiang J; Chen J; Xiong YL
    J Agric Food Chem; 2009 Aug; 57(16):7576-83. PubMed ID: 19601630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution behavior of soy proteins and effect of initial concentration.
    Lui DY; White ET; Litster JD
    J Agric Food Chem; 2007 Mar; 55(6):2467-73. PubMed ID: 17319680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A circular dichroism and fluorescence spectrometric assessment of effects of selected chemical denaturants on soybean (Glycine max L.) storage proteins glycinin (11S) and beta-conglycinin (7S).
    Clara Sze KW; Kshirsagar HH; Venkatachalam M; Sathe SK
    J Agric Food Chem; 2007 Oct; 55(21):8745-53. PubMed ID: 17880146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of succinylation on the structure and thermal aggregation of soy protein isolate.
    Wan Y; Liu J; Guo S
    Food Chem; 2018 Apr; 245():542-550. PubMed ID: 29287407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein recovery in soymilk and various soluble fractions as a function of genotype differences, changes during heating, and homogenization.
    Malaki Nik A; Tosh SM; Poysa V; Woodrow L; Corredig M
    J Agric Food Chem; 2008 Nov; 56(22):10893-900. PubMed ID: 18942846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of glycinin and β-conglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes.
    Salas C; Rojas OJ; Lucia LA; Hubbe MA; Genzer J
    Biomacromolecules; 2012 Feb; 13(2):387-96. PubMed ID: 22229657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Storage Proteins (7S and 11S) from Soybean Seed, Meals and Protein Isolate Using an Optimized Method Via Comparison of Yield and Purity.
    Din JU; Sarwar A; Li Y; Aziz T; Hussain F; Shah SMM; Yi G; Liu X
    Protein J; 2021 Jun; 40(3):396-405. PubMed ID: 33893910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thermal treatment on the coagulation of soy proteins induced by subtilisin Carlsberg.
    Inouye K; Nakano M; Asaoka K; Yasukawa K
    J Agric Food Chem; 2009 Jan; 57(2):717-23. PubMed ID: 19117398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the Structural and Functional Properties of Soybean Protein Extracted from Full-Fat Soybean Flakes after Low-Temperature Dry Extrusion.
    Ma W; Xie F; Zhang S; Wang H; Hu M; Sun Y; Zhong M; Zhu J; Qi B; Li Y
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion exchange chromatographic conditions for obtaining individual subunits of soybean beta-conglycinin.
    Amigo-Benavent M; Athanasopoulos VI; del Castillo MD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Sep; 878(26):2453-6. PubMed ID: 20724230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sorbed water on the thermal stability of soybean protein.
    Tsukada H; Takano K; Hattori M; Yoshida T; Kanuma S; Takahashi K
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2096-103. PubMed ID: 16960389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin.
    Tang CH; Wang CS
    J Agric Food Chem; 2010 Oct; 58(20):11058-66. PubMed ID: 20919718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment.
    Wang JM; Yang XQ; Yin SW; Zhang Y; Tang CH; Li BS; Yuan DB; Guo J
    J Agric Food Chem; 2011 Jul; 59(13):7324-32. PubMed ID: 21609024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical properties of β and α'α subunits isolated from soybean β-conglycinin.
    Mo X; Wang D; Sun XS
    J Agric Food Chem; 2011 Feb; 59(4):1217-22. PubMed ID: 21214174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle X-ray scattering study of the effect of pH and salts on 11S soy glycinin in the freeze-dried powder and solution states.
    Sokolova A; Kealley CS; Hanley T; Rekas A; Gilbert EP
    J Agric Food Chem; 2010 Jan; 58(2):967-74. PubMed ID: 20025226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.