These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 20524731)

  • 21. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants.
    Yoon YJ; Yang G; Cowin SC
    Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
    Kabel J; van Rietbergen B; Dalstra M; Odgaard A; Huiskes R
    J Biomech; 1999 Jul; 32(7):673-80. PubMed ID: 10400354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of side-artifacts on the elastic modulus of trabecular bone.
    Un K; Bevill G; Keaveny TM
    J Biomech; 2006; 39(11):1955-63. PubMed ID: 16824533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulation of the effect of time-to-loading on peri-implant bone.
    Akça K; Eser A; Canay S
    Med Eng Phys; 2010 Jan; 32(1):7-13. PubMed ID: 19864171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical approach to recovering bone porosity from effective complex shear modulus.
    Bonifasi-Lista C; Cherkaev E; Yeni YN
    J Biomech Eng; 2009 Dec; 131(12):121003. PubMed ID: 20524726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical modeling of bone tissue adaptation--a hierarchical approach for bone apparent density and trabecular structure.
    Coelho PG; Fernandes PR; Rodrigues HC; Cardoso JB; Guedes JM
    J Biomech; 2009 May; 42(7):830-7. PubMed ID: 19269639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A penetration-based finite element method for hyperelastic 3D biphasic tissues in contact. Part II: finite element simulations.
    Un K; Spilker RL
    J Biomech Eng; 2006 Dec; 128(6):934-42. PubMed ID: 17154696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling.
    Basaruddin KS; Takano N; Nakano T
    Comput Methods Biomech Biomed Engin; 2015; 18(2):162-74. PubMed ID: 23581258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-parameter model of the effective elastic tensor for cortical bone.
    Grimal Q; Rus G; Parnell WJ; Laugier P
    J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Lagrange multiplier mixed finite element formulation for three-dimensional contact of biphasic tissues.
    Yang T; Spilker RL
    J Biomech Eng; 2007 Jun; 129(3):457-71. PubMed ID: 17536914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing.
    Ulrich D; Hildebrand T; Van Rietbergen B; Müller R; Rüegsegger P
    Stud Health Technol Inform; 1997; 40():97-112. PubMed ID: 10168885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Apparent Young's modulus of human radius using inverse finite-element method.
    Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D
    J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel 3D Microstructural Model for Trabecular Bone: I. The Relationship between Fabric and Elasticity.
    Zysset PK; Ominsky MS; Goldstein SA
    Comput Methods Biomech Biomed Engin; 1998; 1(4):321-331. PubMed ID: 11264812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.
    van Lenthe GH; Voide R; Boyd SK; Müller R
    Bone; 2008 Oct; 43(4):717-23. PubMed ID: 18639658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.