BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20524747)

  • 1. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional knee axis based on isokinetic dynamometry data: Comparison of two methods, MRI validation, and effect on knee joint kinematics.
    Van Campen A; De Groote F; Bosmans L; Scheys L; Jonkers I; De Schutter J
    J Biomech; 2011 Oct; 44(15):2595-600. PubMed ID: 21924426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An MRI-based method to align the compressive loading axis for human cadaveric knees.
    Martin KJ; Neu CP; Hull ML
    J Biomech Eng; 2007 Dec; 129(6):855-62. PubMed ID: 18067389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.
    Brennan A; Zhang J; Deluzio K; Li Q
    Gait Posture; 2011 Jul; 34(3):320-3. PubMed ID: 21715167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint.
    Chang LY; Pollard NS
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1897-906. PubMed ID: 18595809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers.
    Victor J; Van Doninck D; Labey L; Van Glabbeek F; Parizel P; Bellemans J
    J Bone Joint Surg Br; 2009 May; 91(5):683-90. PubMed ID: 19407308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardisation of the description of patellofemoral motion and comparison between different techniques.
    Bull AM; Katchburian MV; Shih YF; Amis AA
    Knee Surg Sports Traumatol Arthrosc; 2002 May; 10(3):184-93. PubMed ID: 12012037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical axes of skeletal knee joint motion during running.
    van den Bogert AJ; Reinschmidt C; Lundberg A
    J Biomech; 2008; 41(8):1632-8. PubMed ID: 18457841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes.
    Lewis GS; Sommer HJ; Piazza SJ
    J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knee joint secondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints.
    Wang H; Zheng NN
    J Biomech Eng; 2010 Dec; 132(12):124502. PubMed ID: 21142329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The movement of the normal tibio-femoral joint.
    Freeman MA; Pinskerova V
    J Biomech; 2005 Feb; 38(2):197-208. PubMed ID: 15598446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.
    Rubenson J; Lloyd DG; Besier TF; Heliams DB; Fournier PA
    J Exp Biol; 2007 Jul; 210(Pt 14):2548-62. PubMed ID: 17601959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for estimating joint parameters from motion data.
    Schwartz MH; Rozumalski A
    J Biomech; 2005 Jan; 38(1):107-16. PubMed ID: 15519345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of the knee joint kinematics calculation to selection of flexion axes.
    Most E; Axe J; Rubash H; Li G
    J Biomech; 2004 Nov; 37(11):1743-8. PubMed ID: 15388317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of femoral fixed body coordinate system definition on knee kinematic description.
    Lenz NM; Mane A; Maletsky LP; Morton NA
    J Biomech Eng; 2008 Apr; 130(2):021014. PubMed ID: 18412501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of formal methods for determining functional joint axes.
    Ehrig RM; Taylor WR; Duda GN; Heller MO
    J Biomech; 2007; 40(10):2150-7. PubMed ID: 17169365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.