These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 20524773)
1. Multicenter cell processing for cardiovascular regenerative medicine applications: the Cardiovascular Cell Therapy Research Network (CCTRN) experience. Gee AP; Richman S; Durett A; McKenna D; Traverse J; Henry T; Fisk D; Pepine C; Bloom J; Willerson J; Prater K; Zhao D; Koç JR; Ellis S; Taylor D; Cogle C; Moyé L; Simari R; Skarlatos S Cytotherapy; 2010 Sep; 12(5):684-91. PubMed ID: 20524773 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting the turnaround time for manufacturing, testing, and release of cellular therapy products prepared at multiple sites in support of multicenter cardiovascular regenerative medicine protocols: a Cardiovascular Cell Therapy Research Network (CCTRN) study. Richman S; Gee AP; McKenna DH; Traverse JH; Henry TD; Fisk D; Pepine CJ; Bloom J; Willerson JT; Prater K; Zhao D; Koç JR; Anwaruddin S; Taylor DA; Cogle CR; Moyé LA; Simari RD; Skarlatos SI Transfusion; 2012 Oct; 52(10):2225-33. PubMed ID: 22320233 [TBL] [Abstract][Full Text] [Related]
3. Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at U.S. academic centers. Phinney DG; Galipeau J; Cytotherapy; 2019 Jul; 21(7):782-792. PubMed ID: 31182333 [TBL] [Abstract][Full Text] [Related]
4. Separation of adult bone marrow mononuclear cells using the automated closed separation system Sepax. Aktas M; Radke TF; Strauer BE; Wernet P; Kogler G Cytotherapy; 2008; 10(2):203-11. PubMed ID: 18368599 [TBL] [Abstract][Full Text] [Related]
5. Processing of autologous bone marrow cells by apheresis technology for cell-based cardiovascular regeneration. Dettke M; Leitner G; Kopp CW; Chen Y; Gyöngyösi M; Lang I Cytotherapy; 2012 Sep; 14(8):1005-10. PubMed ID: 22703161 [TBL] [Abstract][Full Text] [Related]
6. Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Rojewski MT; Lotfi R; Gjerde C; Mustafa K; Veronesi E; Ahmed AB; Wiesneth M; Körper S; Sensebé L; Layrolle P; Hellem S; Schrezenmeier H Cytotherapy; 2019 Apr; 21(4):468-482. PubMed ID: 30926359 [TBL] [Abstract][Full Text] [Related]
7. Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products. Tulina MA; Pyatigorskaya NV Bull Exp Biol Med; 2018 Mar; 164(4):579-582. PubMed ID: 29504094 [TBL] [Abstract][Full Text] [Related]
8. Draft of Iranian National Guideline for Cell Therapy Manufacturing. Aghayan HR; Arjmand B; Ahmadbeigi N; Gheisari Y; Vasei M Arch Iran Med; 2017 Aug; 20(8):547-550. PubMed ID: 28846019 [TBL] [Abstract][Full Text] [Related]
9. GMP-conformant on-site manufacturing of a CD133 Skorska A; Müller P; Gaebel R; Große J; Lemcke H; Lux CA; Bastian M; Hausburg F; Zarniko N; Bubritzki S; Ruch U; Tiedemann G; David R; Steinhoff G Stem Cell Res Ther; 2017 Feb; 8(1):33. PubMed ID: 28187777 [TBL] [Abstract][Full Text] [Related]
10. Processing and Ex Vivo Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells for the Development of an Advanced Therapy Medicinal Product for use in Humans. Labedz-Maslowska A; Szkaradek A; Mierzwinski T; Madeja Z; Zuba-Surma E Cells; 2021 Jul; 10(8):. PubMed ID: 34440677 [TBL] [Abstract][Full Text] [Related]
11. Characterization and cost-benefit analysis of automated bioreactor-expanded mesenchymal stem cells for clinical applications. Russell AL; Lefavor RC; Zubair AC Transfusion; 2018 Oct; 58(10):2374-2382. PubMed ID: 30203447 [TBL] [Abstract][Full Text] [Related]
12. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Wuchter P; Bieback K; Schrezenmeier H; Bornhäuser M; Müller LP; Bönig H; Wagner W; Meisel R; Pavel P; Tonn T; Lang P; Müller I; Renner M; Malcherek G; Saffrich R; Buss EC; Horn P; Rojewski M; Schmitt A; Ho AD; Sanzenbacher R; Schmitt M Cytotherapy; 2015 Feb; 17(2):128-39. PubMed ID: 24856898 [TBL] [Abstract][Full Text] [Related]
13. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy. Aghayan HR; Goodarzi P; Arjmand B Methods Mol Biol; 2015; 1283():93-107. PubMed ID: 25138723 [TBL] [Abstract][Full Text] [Related]
14. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Codinach M; Blanco M; Ortega I; Lloret M; Reales L; Coca MI; Torrents S; Doral M; Oliver-Vila I; Requena-Montero M; Vives J; Garcia-López J Cytotherapy; 2016 Sep; 18(9):1197-208. PubMed ID: 27424149 [TBL] [Abstract][Full Text] [Related]
15. A highly standardized and characterized human platelet lysate for efficient and reproducible expansion of human bone marrow mesenchymal stromal cells. Viau S; Lagrange A; Chabrand L; Lorant J; Charrier M; Rouger K; Alvarez I; Eap S; Delorme B Cytotherapy; 2019 Jul; 21(7):738-754. PubMed ID: 31133491 [TBL] [Abstract][Full Text] [Related]
16. Development of a network to test strategies in cardiovascular cell delivery: the NHLBI-sponsored Cardiovascular Cell Therapy Research Network (CCTRN). Simari RD; Moyé LA; Skarlatos SI; Ellis SG; Zhao DX; Willerson JT; Henry TD; Pepine CJ J Cardiovasc Transl Res; 2010 Feb; 3(1):30-6. PubMed ID: 20445812 [TBL] [Abstract][Full Text] [Related]
17. Optimizing a fully automated and closed system process for red blood cell reduction of human bone marrow products. Remley VA; Collins A; Underwood S; Jin J; Kim Y; Cai Y; Prochazkova M; Moses L; Byrne KM; Jin P; Stroncek DF; Highfill SL Cytotherapy; 2023 Apr; 25(4):442-450. PubMed ID: 36710226 [TBL] [Abstract][Full Text] [Related]
18. Design and Validation of an Automated Process for the Expansion of Peripheral Blood-Derived CD34 Saucourt C; Vogt S; Merlin A; Valat C; Criquet A; Harmand L; Birebent B; Rouard H; Himmelspach C; Jeandidier É; Chartois-Leauté AG; Derenne S; Koehl L; Salem JE; Hulot JS; Tancredi C; Aries A; Judé S; Martel E; Richard S; Douay L; Hénon P Stem Cells Transl Med; 2019 Aug; 8(8):822-832. PubMed ID: 31037857 [TBL] [Abstract][Full Text] [Related]
19. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Traverse JH; Henry TD; Vaughan DE; Ellis SG; Pepine CJ; Willerson JT; Zhao DX; Simpson LM; Penn MS; Byrne BJ; Perin EC; Gee AP; Hatzopoulos AK; McKenna DH; Forder JR; Taylor DA; Cogle CR; Baraniuk S; Olson RE; Jorgenson BC; Sayre SL; Vojvodic RW; Gordon DJ; Skarlatos SI; Moyè LA; Simari RD; Tex Heart Inst J; 2010; 37(4):412-20. PubMed ID: 20844613 [TBL] [Abstract][Full Text] [Related]
20. Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Masuda H; Iwasaki H; Kawamoto A; Akimaru H; Ishikawa M; Ii M; Shizuno T; Sato A; Ito R; Horii M; Ishida H; Kato S; Asahara T Stem Cells Transl Med; 2012 Feb; 1(2):160-71. PubMed ID: 23197763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]