These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2052488)

  • 1. Cholecystokinin blocks some effects of kainic acid in CA3 region of hippocampal slices.
    Aitken PG; Jaffe DB; Nadler JV
    Peptides; 1991; 12(1):127-9. PubMed ID: 2052488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kainic acid inhibits cholecystokinin release from rat hippocampal slices.
    Bray S; Bustos GA; Lee PH; Hong JS; Aitken PG; Nadler JV
    Neurosci Lett; 1989 May; 100(1-3):313-8. PubMed ID: 2761781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid.
    Ben-Ari Y; Gho M
    J Physiol; 1988 Oct; 404():365-84. PubMed ID: 2908124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual granule cells can maintain susceptibility of CA3 pyramidal cells to kainate-induced epileptiform discharges.
    Czéh B; Seress L; Czéh G
    Hippocampus; 1998; 8(5):548-61. PubMed ID: 9825964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of cholecystokinin and cholecystokinin antagonists on synaptic function in the CA1 region of the rat hippocampal slice.
    Jaffe DB; Aitken PG; Nadler JV
    Brain Res; 1987 Jul; 415(1):197-203. PubMed ID: 3040174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity.
    Westbrook GL; Lothman EW
    Brain Res; 1983 Aug; 273(1):97-109. PubMed ID: 6311348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mossy fiber lesion reduces the probability that kainic acid will provoke CA3 hippocampal pyramidal cell bursting.
    Okazaki MM; Aitken PG; Nadler JV
    Brain Res; 1988 Feb; 440(2):352-6. PubMed ID: 3359218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased neuronal responsiveness to cholecystokinin and dopamine induced by lesioning mesolimbic dopaminergic neurons: an electrophysiological study in the rat.
    Debonnel G; de Montigny C
    Synapse; 1988; 2(5):537-45. PubMed ID: 2903570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of hippocampal neurones to kainic acid, and antagonism by kynurenate.
    Stone TW
    Br J Pharmacol; 1990 Dec; 101(4):847-52. PubMed ID: 1964821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1998 Dec; 80(6):2836-47. PubMed ID: 9862888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonism of spontaneous and evoked bursts by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the CA3 region of the in vitro hippocampus.
    Neuman RS; Ben-Ari Y; Cherubini E
    Brain Res; 1988 Nov; 474(1):201-3. PubMed ID: 2905616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baclofen suppresses bursting activity induced in hippocampal slices by differing convulsant treatments.
    Ault B; Gruenthal M; Armstrong DR; Nadler JV; Wang CM
    Eur J Pharmacol; 1986 Jul; 126(3):289-92. PubMed ID: 3019716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of focal injection of kainic acid into the mouse hippocampus in vitro and ex vivo.
    Le Duigou C; Wittner L; Danglot L; Miles R
    J Physiol; 2005 Dec; 569(Pt 3):833-47. PubMed ID: 16239280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory effects of cholecystokinin in rat hippocampus: pharmacological response compatible with 'central'- or B-type CCK receptors.
    Böhme GA; Stutzmann JM; Blanchard JC
    Brain Res; 1988 Jun; 451(1-2):309-18. PubMed ID: 3251590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular electrophysiology of CA1 pyramidal neurones in slices of the kainic acid lesioned hippocampus of the rat.
    Ashwood TJ; Lancaster B; Wheal HV
    Exp Brain Res; 1986; 62(1):189-98. PubMed ID: 3007192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptiform bursts elicited in CA3 hippocampal neurons by a variety of convulsants are not blocked by N-methyl-D-aspartate antagonists.
    Neuman R; Cherubini E; Ben-Ari Y
    Brain Res; 1988 Sep; 459(2):265-74. PubMed ID: 2902900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization of area CA3 hippocampal pyramidal cells and non-granule cells of the dentate gyrus in bicuculline-treated rat hippocampal slices.
    Scharfman HE
    Neuroscience; 1994 Mar; 59(2):245-57. PubMed ID: 8008190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy.
    Smith KL; Lee CL; Swann JW
    J Neurophysiol; 1998 Jan; 79(1):106-16. PubMed ID: 9425181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Mg2+ blockade of synaptically activated N-methyl-D-aspartate receptor-channels in CA1 pyramidal neurons in kainic acid-lesioned rat hippocampus.
    Chen Y; Chad JE; Cannon RC; Wheal HV
    Neuroscience; 1999; 88(3):727-39. PubMed ID: 10363813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.