These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2052516)

  • 1. Relationship of apparent systemic clearance to individual organ clearances: effect of pulmonary clearance and site of drug administration and measurement.
    Mehvar R
    Pharm Res; 1991 Mar; 8(3):306-12. PubMed ID: 2052516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conceptual underestimation of the total body clearance by the sum of clearances of individual organs in physiologically based pharmacokinetics.
    Berezhkovskiy LM
    J Pharm Sci; 2012 Dec; 101(12):4660-5. PubMed ID: 23001916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of lungs to total body clearance: linear and nonlinear effects.
    Collins JM; Dedrick RL
    J Pharm Sci; 1982 Jan; 71(1):66-70. PubMed ID: 7057383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between steady state blood concentrations and cardiac output during intravenous infusions.
    Upton RN
    Biopharm Drug Dispos; 2000 Mar; 21(2):69-76. PubMed ID: 11100908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accuracy of estimation of basic pharmacokinetic parameters by the traditional noncompartmental equations and the prediction of the steady-state volume of distribution in obese patients based upon data derived from normal subjects.
    Berezhkovskiy LM
    J Pharm Sci; 2011 Jun; 100(6):2482-97. PubMed ID: 21254063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological significance of total body clearance in pharmacokinetic studies.
    Chiou WL
    J Clin Hosp Pharm; 1982 Mar; 7(1):25-30. PubMed ID: 7096575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of a single adjusting compartment: a novel methodology for whole body physiologically-based pharmacokinetic modelling.
    Ando H; Izawa S; Hori W; Nakagawa I
    Theor Biol Med Model; 2008 Aug; 5():19. PubMed ID: 18687151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of sequential metabolism. Contribution of parallel, primary metabolic pathways to the formation of a common, secondary metabolite.
    Pang KS
    Drug Metab Dispos; 1995 Feb; 23(2):166-77. PubMed ID: 7736907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Extended Clearance Concept Following Oral and Intravenous Dosing: Theory and Critical Analyses.
    Benet LZ; Bowman CM; Liu S; Sodhi JK
    Pharm Res; 2018 Oct; 35(12):242. PubMed ID: 30349948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation for clinical repeated-dose pharmacokinetic trials applying a peak-and-trough sampling design to estimate oral clearance.
    Ishida K; Kayano Y; Taguchi M; Hashimoto Y
    Biol Pharm Bull; 2007 Nov; 30(11):2159-62. PubMed ID: 17978492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 3: comparative assessement of prediction methods of human clearance.
    Ring BJ; Chien JY; Adkison KK; Jones HM; Rowland M; Jones RD; Yates JW; Ku MS; Gibson CR; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P
    J Pharm Sci; 2011 Oct; 100(10):4090-110. PubMed ID: 21541938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of hepatic and renal systemic clearance pathways in infants: part II.
    Alcorn J; McNamara PJ
    Clin Pharmacokinet; 2002; 41(13):1077-94. PubMed ID: 12403644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of human pharmacokinetics - renal metabolic and excretion clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Nov; 59(11):1463-71. PubMed ID: 17976256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability.
    Howgate EM; Rowland Yeo K; Proctor NJ; Tucker GT; Rostami-Hodjegan A
    Xenobiotica; 2006 Jun; 36(6):473-97. PubMed ID: 16769646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of a recirculatory stochastic pharmacokinetic model: limitations of compartmental models.
    Vaughan DP; Hope I
    J Pharmacokinet Biopharm; 1979 Apr; 7(2):207-25. PubMed ID: 20218015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development.
    del Amo EM; Vellonen KS; Kidron H; Urtti A
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):215-26. PubMed ID: 25603198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro-in vivo extrapolation method to predict human renal clearance of drugs.
    Kunze A; Huwyler J; Poller B; Gutmann H; Camenisch G
    J Pharm Sci; 2014 Mar; 103(3):994-1001. PubMed ID: 24549735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodistribution, plasma kinetics and quantification of single-pass pulmonary clearance of adrenomedullin.
    Dupuis J; Caron A; Ruël N
    Clin Sci (Lond); 2005 Jul; 109(1):97-102. PubMed ID: 15740458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of single sample clearance estimates to probe hepatic drug metabolism in rats. I.
    Bachmann KA; Yang C; Jahn D; Schwartz J
    Xenobiotica; 1988 Feb; 18(2):151-9. PubMed ID: 3131969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Clearance, Volume of distribution, and Half-life of Drugs in Extremely Low to Low Birth Weight Neonates: An Allometric Approach.
    Mahmood I
    Eur J Drug Metab Pharmacokinet; 2017 Aug; 42(4):601-610. PubMed ID: 27562171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.