BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2052517)

  • 21. Pig platelet acidic carboxypeptidases.
    Ostrowska H
    Enzyme Protein; 1994-1995; 48(5-6):291-7. PubMed ID: 8792874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of methotrexate alpha-peptides as prodrugs for activation by enzyme-monoclonal antibody conjugates.
    Huennekens FM
    Adv Enzyme Regul; 1997; 37():77-92. PubMed ID: 9381987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced carboxypeptidase efficacies and differentiation of peptide epimers.
    Sung YS; Putman J; Du S; Armstrong DW
    Anal Biochem; 2022 Apr; 642():114451. PubMed ID: 34774536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carboxypeptidase S-1 from Penicillium janthinellum: enzymatic properties in hydrolysis and aminolysis reactions.
    Breddam K
    Carlsberg Res Commun; 1988; 53(5):309-20. PubMed ID: 3256309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers.
    Bak A; Gudmundsson OS; Friis GJ; Siahaan TJ; Borchardt RT
    Pharm Res; 1999 Jan; 16(1):24-9. PubMed ID: 9950274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methotrexate-alpha-phenylalanine: optimization of methotrexate prodrug for activation by carboxypeptidase A-monoclonal antibody conjugate.
    Vitols KS; Haag-Zeino B; Baer T; Montejano YD; Huennekens FM
    Cancer Res; 1995 Feb; 55(3):478-81. PubMed ID: 7834611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and enzymatic activation of N-[N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithiny]-L-phenylalanine, a candidate for antibody-directed enzyme prodrug therapy (ADEPT).
    Wright JE; Rosowsky A
    Bioorg Med Chem; 2002 Mar; 10(3):493-500. PubMed ID: 11814834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of degradation and oil solubility of ester prodrugs of a model dipeptide (Gly-Phe).
    Larsen SW; Ankersen M; Larsen C
    Eur J Pharm Sci; 2004 Aug; 22(5):399-408. PubMed ID: 15265509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined use of platinum(II) complexes and palladium(II) complexes for selective cleavage of peptides and proteins.
    Milović NM; Dutca LM; Kostić NM
    Inorg Chem; 2003 Jun; 42(13):4036-45. PubMed ID: 12817959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognition of C-terminal amide groups by (serine) carboxypeptidase Y investigated by site-directed mutagenesis.
    Mortensen UH; Raaschou-Nielsen M; Breddam K
    J Biol Chem; 1994 Jun; 269(22):15528-32. PubMed ID: 8195197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of carboxypeptidase-Y-catalysed peptide semisynthesis.
    Christensen U; Drøhse HB; Mølgaard L
    Eur J Biochem; 1992 Dec; 210(2):467-73. PubMed ID: 1459131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate.
    Mortensen UH; Remington SJ; Breddam K
    Biochemistry; 1994 Jan; 33(2):508-17. PubMed ID: 7904479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteolytic specificity of hemorrhage toxin a isolated from western diamondback rattlesnake (Crotalus atrox) venom.
    Tu AT; Nikai T; Baker JO
    Biochemistry; 1981 Nov; 20(24):7004-9. PubMed ID: 7032585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic and conformational changes induced by limited subtilisin cleavage of bovine carboxypeptidase A.
    Solomon BM; Larsen KS; Riordan JF
    Biochemistry; 1990 Aug; 29(31):7303-9. PubMed ID: 1698455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pH on carboxypeptidase-Y-catalyzed hydrolysis and aminolysis reactions.
    Christensen U
    Eur J Biochem; 1994 Feb; 220(1):149-53. PubMed ID: 8119282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery.
    Bai JP; Amidon GL
    Pharm Res; 1992 Aug; 9(8):969-78. PubMed ID: 1409387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of the major carboxypeptidase in the larvae of the webbing clothes moth, Tineola bisselliella.
    Ward CW
    Biochim Biophys Acta; 1976 Apr; 429(2):564-72. PubMed ID: 4137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of a depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases.
    Rasmussen JR; Strominger JL
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):84-8. PubMed ID: 415311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of metal ions in goat carboxypeptidase A-catalysed hydrolysis of acyl peptides.
    Dua RD; Gupta KK
    Biochem Int; 1984 Sep; 9(3):379-89. PubMed ID: 6508815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of an anhydride intermediate in the carboxypeptidase A catalyzed hydrolysis of a peptide substrate by solid state NMR spectroscopy and its mechanistic implication.
    Lee HC; Ko YH; Baek SB; Kim DH
    Bioorg Med Chem Lett; 1998 Dec; 8(23):3379-84. PubMed ID: 9873738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.