BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 20525173)

  • 1. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates.
    Sela N; Kim E; Ast G
    Genome Biol; 2010; 11(6):R59. PubMed ID: 20525173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome.
    Sela N; Mersch B; Gal-Mark N; Lev-Maor G; Hotz-Wagenblatt A; Ast G
    Genome Biol; 2007; 8(6):R127. PubMed ID: 17594509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates.
    Levy A; Sela N; Ast G
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D47-52. PubMed ID: 17986453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic analysis of TE-spliced new exons within human, mouse and zebrafish genomes.
    Kim DS; Huh JW; Kim YH; Park SJ; Kim HS; Chang KT
    Genomics; 2010 Nov; 96(5):266-71. PubMed ID: 20728532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates.
    Chalopin D; Naville M; Plard F; Galiana D; Volff JN
    Genome Biol Evol; 2015 Jan; 7(2):567-80. PubMed ID: 25577199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributions of transposable elements reveal hazardous zones in mammalian introns.
    Zhang Y; Romanish MT; Mager DL
    PLoS Comput Biol; 2011 May; 7(5):e1002046. PubMed ID: 21573203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of transposable element exonization within human and mouse.
    Sela N; Mersch B; Hotz-Wagenblatt A; Ast G
    PLoS One; 2010 Jun; 5(6):e10907. PubMed ID: 20532223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.
    Amit M; Sela N; Keren H; Melamed Z; Muler I; Shomron N; Izraeli S; Ast G
    BMC Mol Biol; 2007 Nov; 8():109. PubMed ID: 18047649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous transposons tune their sequences to ensure somatic suppression.
    Ilık İA; Glažar P; Tse K; Brändl B; Meierhofer D; Müller FJ; Smith ZD; Aktaş T
    Nature; 2024 Feb; 626(8001):1116-1124. PubMed ID: 38355802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes.
    Lin L; Jiang P; Shen S; Sato S; Davidson BL; Xing Y
    Hum Mol Genet; 2009 Jun; 18(12):2204-14. PubMed ID: 19324900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.
    Zhang W; Edwards A; Fan W; Fang Z; Deininger P; Zhang K
    BMC Genomics; 2013 Aug; 14():584. PubMed ID: 23984937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts.
    Jiang F; Zhang J; Liu Q; Liu X; Wang H; He J; Kang L
    RNA Biol; 2019 Jul; 16(7):950-959. PubMed ID: 30982421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome.
    Lipatov M; Lenkov K; Petrov DA; Bergman CM
    BMC Biol; 2005 Nov; 3():24. PubMed ID: 16283942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs).
    Krull M; Petrusma M; Makalowski W; Brosius J; Schmitz J
    Genome Res; 2007 Aug; 17(8):1139-45. PubMed ID: 17623809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.
    Kapusta A; Kronenberg Z; Lynch VJ; Zhuo X; Ramsay L; Bourque G; Yandell M; Feschotte C
    PLoS Genet; 2013 Apr; 9(4):e1003470. PubMed ID: 23637635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin.
    Fontanillas P; Hartl DL; Reuter M
    PLoS Genet; 2007 Nov; 3(11):e210. PubMed ID: 18081425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements.
    Mersch B; Sela N; Ast G; Suhai S; Hotz-Wagenblatt A
    BMC Genet; 2007 Nov; 8():78. PubMed ID: 17986331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.