These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20525384)

  • 21. Ligand docking to proteins with discrete side-chain flexibility.
    Leach AR
    J Mol Biol; 1994 Jan; 235(1):345-56. PubMed ID: 8289255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A backbone-dependent rotamer library with high (ϕ, ψ) coverage using metadynamics simulations.
    Mortensen JC; Damjanovic J; Miao J; Hui T; Lin YS
    Protein Sci; 2022 Dec; 31(12):e4491. PubMed ID: 36327064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using information theory to discover side chain rotamer classes: analysis of the effects of local backbone structure.
    Fetrow JS; Berg G
    Pac Symp Biocomput; 1999; ():278-89. PubMed ID: 10380204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Configurational-bias sampling technique for predicting side-chain conformations in proteins.
    Jain T; Cerutti DS; McCammon JA
    Protein Sci; 2006 Sep; 15(9):2029-39. PubMed ID: 16943441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Side-chain conformational space analysis (SCSA): a multi conformation-based QSAR approach for modeling and prediction of protein-peptide binding affinities.
    Zhou P; Chen X; Shang Z
    J Comput Aided Mol Des; 2009 Mar; 23(3):129-41. PubMed ID: 18841329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search.
    Wilson C; Gregoret LM; Agard DA
    J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins.
    Haddad Y; Adam V; Heger Z
    Biophys J; 2019 Jun; 116(11):2062-2072. PubMed ID: 31084902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library.
    Kothiwale S; Mendenhall JL; Meiler J
    J Cheminform; 2015; 7():47. PubMed ID: 26473018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical and conformational analysis of the electron density of protein side chains.
    Shapovalov MV; Dunbrack RL
    Proteins; 2007 Feb; 66(2):279-303. PubMed ID: 17080462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advantages of fine-grained side chain conformer libraries.
    Shetty RP; De Bakker PI; DePristo MA; Blundell TL
    Protein Eng; 2003 Dec; 16(12):963-9. PubMed ID: 14983076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm.
    Leach AR; Lemon AP
    Proteins; 1998 Nov; 33(2):227-39. PubMed ID: 9779790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).
    Subramaniam S; Senes A
    Proteins; 2014 Nov; 82(11):3177-87. PubMed ID: 25212195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced dead-end elimination in the search for the global minimum energy conformation of a collection of protein side chains.
    Lasters I; De Maeyer M; Desmet J
    Protein Eng; 1995 Aug; 8(8):815-22. PubMed ID: 8637851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved packing of protein side chains with parallel ant colonies.
    Quan L; Lü Q; Li H; Xia X; Wu H
    BMC Bioinformatics; 2014; 15 Suppl 12(Suppl 12):S5. PubMed ID: 25474164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dead-end elimination theorem and its use in protein side-chain positioning.
    Desmet J; De Maeyer M; Hazes B; Lasters I
    Nature; 1992 Apr; 356(6369):539-42. PubMed ID: 21488406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Side-chain modeling with an optimized scoring function.
    Liang S; Grishin NV
    Protein Sci; 2002 Feb; 11(2):322-31. PubMed ID: 11790842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In search of the protein native state with a probabilistic sampling approach.
    Olson B; Molloy K; Shehu A
    J Bioinform Comput Biol; 2011 Jun; 9(3):383-98. PubMed ID: 21714131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library.
    Peterson RW; Dutton PL; Wand AJ
    Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein side chain conformations: a study on the influence of backbone accuracy on conformation stability in the rotamer space.
    Tufféry P; Etchebest C; Hazout S
    Protein Eng; 1997 Apr; 10(4):361-72. PubMed ID: 9194160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.