These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20525384)

  • 61. Prediction of side-chain conformations on protein surfaces.
    Xiang Z; Steinbach PJ; Jacobson MP; Friesner RA; Honig B
    Proteins; 2007 Mar; 66(4):814-23. PubMed ID: 17206724
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hierarchical and multi-resolution representation of protein flexibility.
    Zhao Y; Stoffler D; Sanner M
    Bioinformatics; 2006 Nov; 22(22):2768-74. PubMed ID: 16984893
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bayesian statistical analysis of protein side-chain rotamer preferences.
    Dunbrack RL; Cohen FE
    Protein Sci; 1997 Aug; 6(8):1661-81. PubMed ID: 9260279
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protein side chain conformation predictions with an MMGBSA energy function.
    Gaillard T; Panel N; Simonson T
    Proteins; 2016 Jun; 84(6):803-19. PubMed ID: 26948696
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Probabilistic sampling of protein conformations: new hope for brute force?
    Feldman HJ; Hogue CW
    Proteins; 2002 Jan; 46(1):8-23. PubMed ID: 11746699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sampling the conformation of protein surface residues for flexible protein docking.
    Francis-Lyon P; Gu S; Hass J; Amenta N; Koehl P
    BMC Bioinformatics; 2010 Nov; 11():575. PubMed ID: 21092317
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The energetics of off-rotamer protein side-chain conformations.
    Petrella RJ; Karplus M
    J Mol Biol; 2001 Oct; 312(5):1161-75. PubMed ID: 11580256
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy.
    Koehl P; Delarue M
    J Mol Biol; 1994 Jun; 239(2):249-75. PubMed ID: 8196057
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Constructing side chains on near-native main chains for ab initio protein structure prediction.
    Samudrala R; Huang ES; Koehl P; Levitt M
    Protein Eng; 2000 Jul; 13(7):453-7. PubMed ID: 10906341
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A combinatorial approach to protein docking with flexible side chains.
    Althaus E; Kohlbacher O; Lenhof HP; Müller P
    J Comput Biol; 2002; 9(4):597-612. PubMed ID: 12323095
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Motif-directed flexible backbone design of functional interactions.
    Havranek JJ; Baker D
    Protein Sci; 2009 Jun; 18(6):1293-305. PubMed ID: 19472357
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A simple model of backbone flexibility improves modeling of side-chain conformational variability.
    Friedland GD; Linares AJ; Smith CA; Kortemme T
    J Mol Biol; 2008 Jul; 380(4):757-74. PubMed ID: 18547586
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis.
    Zavodszky MI; Kuhn LA
    Protein Sci; 2005 Apr; 14(4):1104-14. PubMed ID: 15772311
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modelling protein side-chain conformations using constraint logic programming.
    Swain MT; Kemp GJ
    Comput Chem; 2001 Dec; 26(1):85-95. PubMed ID: 11765856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Determinants of side chain conformational preferences in protein structures.
    Samudrala R; Moult J
    Protein Eng; 1998 Nov; 11(11):991-7. PubMed ID: 9876919
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of side-chain rotamers in transmembrane proteins.
    Chamberlain AK; Bowie JU
    Biophys J; 2004 Nov; 87(5):3460-9. PubMed ID: 15339811
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Flexible backbone sampling methods to model and design protein alternative conformations.
    Ollikainen N; Smith CA; Fraser JS; Kortemme T
    Methods Enzymol; 2013; 523():61-85. PubMed ID: 23422426
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rotamer strain energy in protein helices - quantification of a major force opposing protein folding.
    Penel S; Doig AJ
    J Mol Biol; 2001 Jan; 305(4):961-8. PubMed ID: 11162106
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improved modeling of side-chains in proteins with rotamer-based methods: a flexible rotamer model.
    Mendes J; Baptista AM; Carrondo MA; Soares CM
    Proteins; 1999 Dec; 37(4):530-43. PubMed ID: 10651269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.