These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20525384)

  • 81. Refinement of protein cores and protein-peptide interfaces using a potential scaling approach.
    Riemann RN; Zacharias M
    Protein Eng Des Sel; 2005 Oct; 18(10):465-76. PubMed ID: 16155119
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
    Smith CA; Kortemme T
    J Mol Biol; 2008 Jul; 380(4):742-56. PubMed ID: 18547585
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
    Molloy K; Saleh S; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1162-75. PubMed ID: 24384705
    [TBL] [Abstract][Full Text] [Related]  

  • 84. An energy-based conformer library for side chain optimization: improved prediction and adjustable sampling.
    Subramaniam S; Senes A
    Proteins; 2012 Aug; 80(9):2218-34. PubMed ID: 22576292
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.
    Hao XH; Zhang GJ; Zhou XG; Yu XF
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):887-900. PubMed ID: 26552093
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Protein side chain modeling with orientation-dependent atomic force fields derived by series expansions.
    Liang S; Zhou Y; Grishin N; Standley DM
    J Comput Chem; 2011 Jun; 32(8):1680-6. PubMed ID: 21374632
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Residues with similar hexagon neighborhoods share similar side-chain conformations.
    Li SC; Bu D; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):240-8. PubMed ID: 21519113
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins.
    Ahmed A; Rippmann F; Barnickel G; Gohlke H
    J Chem Inf Model; 2011 Jul; 51(7):1604-22. PubMed ID: 21639141
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Docking and scoring with alternative side-chain conformations.
    Hartmann C; Antes I; Lengauer T
    Proteins; 2009 Feb; 74(3):712-26. PubMed ID: 18704939
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.
    Porebski PJ; Cymborowski M; Pasenkiewicz-Gierula M; Minor W
    Acta Crystallogr D Struct Biol; 2016 Feb; 72(Pt 2):266-80. PubMed ID: 26894674
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Visible volume: a robust measure for protein structure characterization.
    Lo Conte L; Smith TF
    J Mol Biol; 1997 Oct; 273(1):338-48. PubMed ID: 9367766
    [TBL] [Abstract][Full Text] [Related]  

  • 92. H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing.
    Visani GM; Galvin W; Pun MN; Nourmohammad A
    ArXiv; 2023 Nov; ():. PubMed ID: 38013891
    [TBL] [Abstract][Full Text] [Related]  

  • 93. SPRINT: side-chain prediction inference toolbox for multistate protein design.
    Fromer M; Yanover C; Harel A; Shachar O; Weiss Y; Linial M
    Bioinformatics; 2010 Oct; 26(19):2466-7. PubMed ID: 20685957
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The use of position-specific rotamers in model building by homology.
    Chinea G; Padron G; Hooft RW; Sander C; Vriend G
    Proteins; 1995 Nov; 23(3):415-21. PubMed ID: 8710834
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains.
    Dunbrack RL; Karplus M
    Nat Struct Biol; 1994 May; 1(5):334-40. PubMed ID: 7664040
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An all-atom protein generative model.
    Chu AE; Kim J; Cheng L; El Nesr G; Xu M; Shuai RW; Huang PS
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311500121. PubMed ID: 38916999
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Structure fluctuations and conformational changes in protein binding.
    Ruvinsky AM; Kirys T; Tuzikov AV; Vakser IA
    J Bioinform Comput Biol; 2012 Apr; 10(2):1241002. PubMed ID: 22809338
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transforming between discrete and continuous angle distribution models: application to protein χ₁ torsions.
    Schmidt JM
    J Biomol NMR; 2012 Sep; 54(1):97-114. PubMed ID: 22847493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.