These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 20525536)
1. Characterizing mechanical properties of biological cells by microinjection. Tan Y; Sun D; Huang W; Cheng SH IEEE Trans Nanobioscience; 2010 Sep; 9(3):171-80. PubMed ID: 20525536 [TBL] [Abstract][Full Text] [Related]
2. Mechanical modeling of biological cells in microinjection. Tan Y; Sun D; Huang W; Cheng SH IEEE Trans Nanobioscience; 2008 Dec; 7(4):257-66. PubMed ID: 19203869 [TBL] [Abstract][Full Text] [Related]
3. Analyzing the interplay between single cell rheology and force generation through large deformation finite element models. Monteiro E; Yvonnet J; He QC; Cardoso O; Asnacios A Biomech Model Mechanobiol; 2011 Dec; 10(6):813-30. PubMed ID: 21181227 [TBL] [Abstract][Full Text] [Related]
4. In situ mechanical characterization of mouse oocytes using a cell holding device. Liu X; Fernandes R; Jurisicova A; Casper RF; Sun Y Lab Chip; 2010 Aug; 10(16):2154-61. PubMed ID: 20544113 [TBL] [Abstract][Full Text] [Related]
5. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
6. An Eulerian/XFEM formulation for the large deformation of cortical cell membrane. Vernerey FJ; Farsad M Comput Methods Biomech Biomed Engin; 2011 May; 14(5):433-45. PubMed ID: 21516528 [TBL] [Abstract][Full Text] [Related]
7. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. Babalola OM; Bonassar LJ J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968 [TBL] [Abstract][Full Text] [Related]
8. Analyses of the cell mechanical damage during microinjection. Liu F; Wu D; Wu X; Chen K Soft Matter; 2015 Feb; 11(7):1434-42. PubMed ID: 25584666 [TBL] [Abstract][Full Text] [Related]
9. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests. Schmid H; O'Callaghan P; Nash MP; Lin W; LeGrice IJ; Smaill BH; Young AA; Hunter PJ Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519 [TBL] [Abstract][Full Text] [Related]
10. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
11. Measurement of lung hyperelastic properties using inverse finite element approach. Sadeghi Naini A; Patel RV; Samani A IEEE Trans Biomed Eng; 2011 Oct; 58(10):2852-9. PubMed ID: 21724500 [TBL] [Abstract][Full Text] [Related]
12. Mechanical and failure properties of single attached cells under compression. Peeters EA; Oomens CW; Bouten CV; Bader DL; Baaijens FP J Biomech; 2005 Aug; 38(8):1685-93. PubMed ID: 15958226 [TBL] [Abstract][Full Text] [Related]
13. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. Tan Y; Sun D; Wang J; Huang W IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536 [TBL] [Abstract][Full Text] [Related]
14. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695 [TBL] [Abstract][Full Text] [Related]
15. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Speirs DC; de Souza Neto EA; Perić D J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766 [TBL] [Abstract][Full Text] [Related]
16. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. Ning X; Zhu Q; Lanir Y; Margulies SS J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695 [TBL] [Abstract][Full Text] [Related]
17. Constitutive material modeling of cell: a micromechanics approach. Unnikrishnan GU; Unnikrishnan VU; Reddy JN J Biomech Eng; 2007 Jun; 129(3):315-23. PubMed ID: 17536898 [TBL] [Abstract][Full Text] [Related]
18. Apparent Young's modulus of human radius using inverse finite-element method. Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663 [TBL] [Abstract][Full Text] [Related]
19. In vitro technique in estimation of passive mechanical properties of bovine heart part II. Constitutive relation and finite element analysis. Ghaemi H; Behdinan K; Spence AD Med Eng Phys; 2009 Jan; 31(1):83-91. PubMed ID: 18539073 [TBL] [Abstract][Full Text] [Related]
20. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]