BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20525592)

  • 1. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics.
    Sheffield NC; Song H; Cameron SL; Whiting MF
    Syst Biol; 2009 Aug; 58(4):381-94. PubMed ID: 20525592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution.
    Blanquart S; Lartillot N
    Mol Biol Evol; 2006 Nov; 23(11):2058-71. PubMed ID: 16931538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera.
    Pons J; Ribera I; Bertranpetit J; Balke M
    Mol Phylogenet Evol; 2010 Aug; 56(2):796-807. PubMed ID: 20152911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional heterogeneity and phylogenomic inference of metazoan relationships.
    Nesnidal MP; Helmkampf M; Bruchhaus I; Hausdorf B
    Mol Biol Evol; 2010 Sep; 27(9):2095-104. PubMed ID: 20382658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogeny and host-specificity of European seed beetles (Coleoptera, Bruchidae), new insights from molecular and ecological data.
    Kergoat GJ; Delobel A; Silvain JF
    Mol Phylogenet Evol; 2004 Sep; 32(3):855-65. PubMed ID: 15288061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias.
    Liu Y; Cox CJ; Wang W; Goffinet B
    Syst Biol; 2014 Nov; 63(6):862-78. PubMed ID: 25070972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods.
    Gibson A; Gowri-Shankar V; Higgs PG; Rattray M
    Mol Biol Evol; 2005 Feb; 22(2):251-64. PubMed ID: 15483324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content.
    Gruber KF; Voss RS; Jansa SA
    Syst Biol; 2007 Feb; 56(1):83-96. PubMed ID: 17366139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles.
    Wild AL; Maddison DR
    Mol Phylogenet Evol; 2008 Sep; 48(3):877-91. PubMed ID: 18644735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring rate variation among and within sites in a densely sampled tree: species level phylogenetics of north american tiger beetles (genus cicindela).
    Vogler A; Cardoso A; Barraclough T
    Syst Biol; 2005 Feb; 54(1):4-20. PubMed ID: 15805007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistate characters and diet shifts: evolution of Erotylidae (Coleoptera).
    Leschen RA; Buckley TR
    Syst Biol; 2007 Feb; 56(1):97-112. PubMed ID: 17366140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the correlation between composition and site-specific evolutionary rate: implications for phylogenetic inference.
    Gowri-Shankar V; Rattray M
    Mol Biol Evol; 2006 Feb; 23(2):352-64. PubMed ID: 16237207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic?
    Magro A; Lecompte E; Magné F; Hemptinne JL; Crouau-Roy B
    Mol Phylogenet Evol; 2010 Mar; 54(3):833-48. PubMed ID: 19903531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of unisexuality in Calligrapha leaf beetles: molecular and ecological insights on multiple origins via interspecific hybridization.
    Gómez-Zurita J; Funk DJ; Vogler AP
    Evolution; 2006 Feb; 60(2):328-47. PubMed ID: 16610324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of model choice on phylogenetic inference using mitochondrial sequence data: lessons from the scorpions.
    Jones M; Gantenbein B; Fet V; Blaxter M
    Mol Phylogenet Evol; 2007 May; 43(2):583-95. PubMed ID: 17275351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.
    Fenn JD; Song H; Cameron SL; Whiting MF
    Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes).
    Li J; Wang X; Kong X; Zhao K; He S; Mayden RL
    Mol Phylogenet Evol; 2008 May; 47(2):472-87. PubMed ID: 18378468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa.
    Sperling EA; Peterson KJ; Pisani D
    Mol Biol Evol; 2009 Oct; 26(10):2261-74. PubMed ID: 19597161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making the most of mitochondrial genomes--markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea).
    Zarowiecki MZ; Huyse T; Littlewood DT
    Int J Parasitol; 2007 Oct; 37(12):1401-18. PubMed ID: 17570370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.