These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20525872)

  • 21. Bacterial Communities on the Surface of the Mineral Sandy Soil from the Desert of Maine (USA).
    Wang Y; Osman JR; DuBow MS
    Curr Microbiol; 2020 Aug; 77(8):1429-1437. PubMed ID: 32193606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between Biotite and the Mineral-Weathering Bacterium
    Wang YL; Sun LJ; Xian CM; Kou FL; Zhu Y; He LY; Sheng XF
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock.
    Napieralski SA; Buss HL; Brantley SL; Lee S; Xu H; Roden EE
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26394-26401. PubMed ID: 31843926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability.
    Nicolitch O; Feucherolles M; Churin JL; Fauchery L; Turpault MP; Uroz S
    Sci Rep; 2019 Oct; 9(1):14403. PubMed ID: 31591410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps.
    Adamczyk M; Hagedorn F; Wipf S; Donhauser J; Vittoz P; Rixen C; Frossard A; Theurillat JP; Frey B
    Front Microbiol; 2019; 10():1080. PubMed ID: 31156590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of mineral-dissolving bacteria from different levels of altered mica schist surfaces and the adjacent soil.
    Wang YL; Wang Q; Yuan R; Sheng XF; He LY
    World J Microbiol Biotechnol; 2018 Dec; 35(1):2. PubMed ID: 30536084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metagenomic insights into diazotrophic communities across Arctic glacier forefields.
    Nash MV; Anesio AM; Barker G; Tranter M; Varliero G; Eloe-Fadrosh EA; Nielsen T; Turpin-Jelfs T; Benning LG; Sánchez-Baracaldo P
    FEMS Microbiol Ecol; 2018 Sep; 94(9):. PubMed ID: 29901729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments.
    Olsson-Francis K; Pearson VK; Steer ED; Schwenzer SP
    Front Microbiol; 2017; 8():1668. PubMed ID: 28943863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate.
    Rijavec T; Lapanje A
    Front Microbiol; 2016; 7():1785. PubMed ID: 27917154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.
    Yang GL; Hou SG; Le Baoge R; Li ZG; Xu H; Liu YP; Du WT; Liu YQ
    Sci Rep; 2016 Nov; 6():36548. PubMed ID: 27811967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging the divide: a model-data approach to Polar and Alpine microbiology.
    Bradley JA; Anesio AM; Arndt S
    FEMS Microbiol Ecol; 2016 Mar; 92(3):. PubMed ID: 26832206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier.
    Rime T; Hartmann M; Frey B
    ISME J; 2016 Jul; 10(7):1625-41. PubMed ID: 26771926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps.
    Meola M; Lazzaro A; Zeyer J
    Front Microbiol; 2015; 6():1454. PubMed ID: 26733988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications.
    Shivlata L; Satyanarayana T
    Front Microbiol; 2015; 6():1014. PubMed ID: 26441937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India.
    Paul D; Kazy SK; Gupta AK; Pal T; Sar P
    PLoS One; 2015; 10(3):e0118735. PubMed ID: 25799109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis.
    Yarwood S; Wick A; Williams M; Daniels WL
    Microb Ecol; 2015 Feb; 69(2):383-94. PubMed ID: 25370885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depth-related changes in community structure of culturable mineral weathering bacteria and in weathering patterns caused by them along two contrasting soil profiles.
    Huang J; Sheng XF; Xi J; He LY; Huang Z; Wang Q; Zhang ZD
    Appl Environ Microbiol; 2014 Jan; 80(1):29-42. PubMed ID: 24077700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dynamic bacterial communities of a melting High Arctic glacier snowpack.
    Hell K; Edwards A; Zarsky J; Podmirseg SM; Girdwood S; Pachebat JA; Insam H; Sattler B
    ISME J; 2013 Sep; 7(9):1814-26. PubMed ID: 23552623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes.
    Franzetti A; Tatangelo V; Gandolfi I; Bertolini V; Bestetti G; Diolaiuti G; D'Agata C; Mihalcea C; Smiraglia C; Ambrosini R
    ISME J; 2013 Aug; 7(8):1483-92. PubMed ID: 23535918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils.
    Lepleux C; Turpault MP; Oger P; Frey-Klett P; Uroz S
    Appl Environ Microbiol; 2012 Oct; 78(19):7114-9. PubMed ID: 22798365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.