These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2052591)

  • 21. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.
    Zhao QC; Liu MH; Zhang XW; Lin CY; Zhang Q; Shen ZC
    J Zhejiang Univ Sci B; 2015 Oct; 16(10):824-31. PubMed ID: 26465130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resistance to bio-insecticides or how to enhance their sustainability: a review.
    Siegwart M; Graillot B; Blachere Lopez C; Besse S; Bardin M; Nicot PC; Lopez-Ferber M
    Front Plant Sci; 2015; 6():381. PubMed ID: 26150820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography.
    Lu L; Qi Z; Zhang J; Wu W
    Toxins (Basel); 2015 May; 7(5):1738-48. PubMed ID: 25996604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oviposition preference of the diamondback moth (Plutella xylostelld) unaffected by the presence of conspecific eggs orBacillus thuringiensis.
    Groeters FR; Tabashnik BE; Finson N; Johnson MW
    J Chem Ecol; 1992 Dec; 18(12):2353-62. PubMed ID: 24254875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptors and Lethal Effect of Bacillus thuringiensis Insecticidal Crystal Proteins to the Anticarsia gemmatalis (Lepidoptera, Noctuidae).
    Fiuza LM; Knaak N; da Silva RF; Henriques JA
    ISRN Microbiol; 2013; 2013():940284. PubMed ID: 24195006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insecticidal activity of Bacillus thuringiensis Cry1Bh1 against Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) and other lepidopteran pests.
    Lira J; Beringer J; Burton S; Griffin S; Sheets J; Tan SY; Woosley A; Worden S; Narva KE
    Appl Environ Microbiol; 2013 Dec; 79(24):7590-7. PubMed ID: 24077715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda.
    Hernández-Rodríguez CS; Hernández-Martínez P; Van Rie J; Escriche B; Ferré J
    PLoS One; 2013; 8(7):e68164. PubMed ID: 23861865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential proteomic analysis of Trichoplusia ni cells after continuous selection with activated Cry1Ac toxin.
    Gai Z; Zhang X; Wang X; Peng J; Li Y; Liu K; Hong H
    Cytotechnology; 2013 May; 65(3):425-35. PubMed ID: 23070538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of Cry1Fa binding to the midgut brush border membrane in a resistant colony of Plutella xylostella moths with a mutation in the ABCC2 locus.
    Hernández-Martínez P; Hernández-Rodríguez CS; Krishnan V; Crickmore N; Escriche B; Ferré J
    Appl Environ Microbiol; 2012 Sep; 78(18):6759-61. PubMed ID: 22773634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillus thuringiensis: a genomics and proteomics perspective.
    Ibrahim MA; Griko N; Junker M; Bulla LA
    Bioeng Bugs; 2010; 1(1):31-50. PubMed ID: 21327125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of insecticidal activity of a bacterial strain, Serratia sp. EML-SE1 against diamondback moth.
    Jeong HU; Mun HY; Oh HK; Kim SB; Yang KY; Kim I; Lee HB
    J Microbiol; 2010 Aug; 48(4):541-5. PubMed ID: 20799099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.
    Caccia S; Hernández-Rodríguez CS; Mahon RJ; Downes S; James W; Bautsoens N; Van Rie J; Ferré J
    PLoS One; 2010 Apr; 5(4):e9975. PubMed ID: 20376312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alanine scanning analyses of the three major loops in domain II of Bacillus thuringiensis mosquitocidal toxin Cry4Aa.
    Howlader MT; Kagawa Y; Miyakawa A; Yamamoto A; Taniguchi T; Hayakawa T; Sakai H
    Appl Environ Microbiol; 2010 Feb; 76(3):860-5. PubMed ID: 19948851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites.
    Sena JA; Hernández-Rodríguez CS; Ferré J
    Appl Environ Microbiol; 2009 Apr; 75(7):2236-7. PubMed ID: 19181834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts.
    Berling M; Blachere-Lopez C; Soubabere O; Lery X; Bonhomme A; Sauphanor B; Lopez-Ferber M
    Appl Environ Microbiol; 2009 Feb; 75(4):925-30. PubMed ID: 19114533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni.
    Wang P; Zhao JZ; Rodrigo-Simón A; Kain W; Janmaat AF; Shelton AM; Ferré J; Myers J
    Appl Environ Microbiol; 2007 Feb; 73(4):1199-207. PubMed ID: 17189446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants.
    Ruiz de Escudero I; Estela A; Escriche B; Caballero P
    Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Utilization of Free and Clay-Bound Insecticidal Toxins from Bacillus thuringiensis and Their Retention of Insecticidal Activity after Incubation with Microbes.
    Koskella J; Stotzky G
    Appl Environ Microbiol; 1997 Sep; 63(9):3561-8. PubMed ID: 16535692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth.
    Liu Y; Tabashnik BE
    Appl Environ Microbiol; 1997 Jun; 63(6):2218-23. PubMed ID: 16535623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai.
    Wright DJ; Iqbal M; Granero F; Ferre J
    Appl Environ Microbiol; 1997 May; 63(5):1814-9. PubMed ID: 16535597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.