BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20526514)

  • 1. Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays.
    Masini L; Cecchini M; Girardo S; Cingolani R; Pisignano D; Beltram F
    Lab Chip; 2010 Aug; 10(15):1997-2000. PubMed ID: 20526514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrays and cascades of fluorescent liquid-liquid waveguides: broadband light sources for spectroscopy in microchannels.
    Mayers BT; Vezenov DV; Vullev VI; Whitesides GM
    Anal Chem; 2005 Mar; 77(5):1310-6. PubMed ID: 15732912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. I-shaped microchannel array chip for parallel electrophoretic analyses.
    Inoue A; Ito T; Makino K; Hosokawa K; Maeda M
    Anal Chem; 2007 Mar; 79(5):2168-73. PubMed ID: 17269791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar chip device for PCR and hybridization with surface acoustic wave pump.
    Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A
    Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface motion of capillary-driven flow in rectangular microchannel.
    Ichikawa N; Hosokawa K; Maeda R
    J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices.
    Franke T; Abate AR; Weitz DA; Wixforth A
    Lab Chip; 2009 Sep; 9(18):2625-7. PubMed ID: 19704975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture.
    Wu MH; Huang SB; Cui Z; Cui Z; Lee GB
    Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustothermal heating of polydimethylsiloxane microfluidic system.
    Ha BH; Lee KS; Destgeer G; Park J; Choung JS; Jung JH; Shin JH; Sung HJ
    Sci Rep; 2015 Jul; 5():11851. PubMed ID: 26138310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves.
    Dentry MB; Friend JR; Yeo LY
    Lab Chip; 2014 Feb; 14(4):750-8. PubMed ID: 24336764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage controlled SAW velocity in GaAs/LiNbO(3)-hybrids.
    Rotter M; Ruile W; Wixforth A; Kotthaus JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):120-5. PubMed ID: 18238405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-directed liquid flow inside microchannels.
    Zhao B; Moore JS; Beebe DJ
    Science; 2001 Feb; 291(5506):1023-6. PubMed ID: 11161212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand droplet splitting using surface acoustic waves.
    Jung JH; Destgeer G; Ha B; Park J; Sung HJ
    Lab Chip; 2016 Aug; 16(17):3235-43. PubMed ID: 27435869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.