These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 20526523)

  • 21. A texture-based classification of crackles and squawks using lacunarity.
    Hadjileontiadis LJ
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):718-32. PubMed ID: 19174342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy of gray-scale coding in lung sound mapping.
    Mehta AC; Gat M; Mann S; Madison JM
    Comput Med Imaging Graph; 2010 Jul; 34(5):362-9. PubMed ID: 20171843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic breath and snore sounds classification from tracheal and ambient sounds recordings.
    Yadollahi A; Moussavi Z
    Med Eng Phys; 2010 Nov; 32(9):985-90. PubMed ID: 20674455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new versatile PC-based lung sound analyzer with automatic crackle analysis (HeLSA); repeatability of spectral parameters and sound amplitude in healthy subjects.
    Sovijärvi AR; Helistö P; Malmberg LP; Kallio K; Paajanen E; Saarinen A; Lipponen P; Haltsonen S; Pekkanen L; Piirilä P; Näveri L; Katila T
    Technol Health Care; 1998 Jun; 6(1):11-22. PubMed ID: 9754680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic Wheezing Detection Based on Signal Processing of Spectrogram and Back-Propagation Neural Network.
    Lin BS; Wu HD; Chen SJ
    J Healthc Eng; 2015; 6(4):649-72. PubMed ID: 27011042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A visual stethoscope to detect the position of the tracheal tube.
    Kato H; Suzuki A; Nakajima Y; Makino H; Sanjo Y; Nakai T; Shiraishi Y; Katoh T; Sato S
    Anesth Analg; 2009 Dec; 109(6):1836-42. PubMed ID: 19923511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic imaging of the human chest.
    Kompis M; Pasterkamp H; Wodicka GR
    Chest; 2001 Oct; 120(4):1309-21. PubMed ID: 11591576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of an automated algorithm for detecting apneas and hypopneas by acoustic analysis of breath sounds.
    Alshaer H; Fernie GR; Maki E; Bradley TD
    Sleep Med; 2013 Jun; 14(6):562-71. PubMed ID: 23453251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards the Development of a Mobile Phonopneumogram: Automatic Breath-Phase Classification Using Smartphones.
    Reyes BA; Reljin N; Kong Y; Nam Y; Ha S; Chon KH
    Ann Biomed Eng; 2016 Sep; 44(9):2746-59. PubMed ID: 26847825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory acoustic thoracic imaging (RATHI): assessing intrasubject variability.
    Torres-Jimenez A; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4793-6. PubMed ID: 19163788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Normal and Adventitious Breath Sounds].
    Koehler U; Hildebrandt O; Kerzel S; Urban C; Hoehle L; Weissflog A; Nikolaizik W; Koehler J; Sohrabi K; Gross V
    Pneumologie; 2016 Jun; 70(6):397-404. PubMed ID: 27177168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Classification of wheeze sounds using cepstral analysis and neural networks.
    Hashemi A; Arabalibeik H; Agin K
    Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and measurement of flow effects on tracheal sounds.
    Harper VP; Pasterkamp H; Kiyokawa H; Wodicka GR
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):1-10. PubMed ID: 12617519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comparison of SVM and GMM-Based Classifier Configurations for Diagnostic Classification of Pulmonary Sounds.
    Sen I; Saraclar M; Kahya YP
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1768-76. PubMed ID: 25700439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supervised neural network classification of pre-sliced cooked pork ham images using quaternionic singular values.
    Valous NA; Mendoza F; Sun DW; Allen P
    Meat Sci; 2010 Mar; 84(3):422-30. PubMed ID: 20374805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [New classification and analysis of lung sounds].
    Kikuchi K; Watanabe M; Hashizume T; Kawamura M; Kato R; Kobayashi K; Ishihara T
    Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2532-7. PubMed ID: 2625566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computerized classification of normal and abnormal lung sounds by multivariate linear autoregressive model.
    Martinez-Hernandez HG; Aljama-Corrales CT; Gonzalez-Camarena R; Charleston-Villalobos VS; Chi-Lem G
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5999-6002. PubMed ID: 17281628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.
    Naves R; Barbosa BH; Ferreira DD
    Comput Methods Programs Biomed; 2016 Jun; 129():12-20. PubMed ID: 27084316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinguishing normal and abnormal tracheal breathing sounds by principal component analysis.
    Mussell MJ; Nakazono Y; Miyamoto Y; Okabe S; Takishima T
    Jpn J Physiol; 1990; 40(5):713-21. PubMed ID: 2086991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibration response imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia.
    Bartziokas K; Daenas C; Preau S; Zygoulis P; Triantaris A; Kerenidi T; Makris D; Gourgoulianis KI; Daniil Z
    BMC Med Imaging; 2010 Mar; 10():6. PubMed ID: 20222975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.