These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20526573)

  • 1. New discoveries in the transmission biology of sleeping sickness parasites: applying the basics.
    MacGregor P; Matthews KR
    J Mol Med (Berl); 2010 Sep; 88(9):865-71. PubMed ID: 20526573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei.
    Dewar CE; MacGregor P; Cooper S; Gould MK; Matthews KR; Savill NJ; Schnaufer A
    PLoS Pathog; 2018 Jul; 14(7):e1007195. PubMed ID: 30020996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. African trypanosomes.
    Cayla M; Rojas F; Silvester E; Venter F; Matthews KR
    Parasit Vectors; 2019 Apr; 12(1):190. PubMed ID: 31036044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Occupancy of the Bromodomain Protein Bdf3 Is Dynamic during Differentiation of African Trypanosomes from Bloodstream to Procyclic Forms.
    Ashby E; Paddock L; Betts HL; Liao J; Miller G; Porter A; Rollosson LM; Saada C; Tang E; Wade SJ; Hardin J; Schulz D
    mSphere; 2022 Jun; 7(3):e0002322. PubMed ID: 35642518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies.
    Dean S
    Curr Pharm Des; 2021; 27(14):1650-1670. PubMed ID: 33463458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypanosoma brucei s.l.: Microsatellite markers revealed high level of multiple genotypes in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus of Cameroon.
    Simo G; Njitchouang GR; Njiokou F; Cuny G; Asonganyi T
    Exp Parasitol; 2011 Jul; 128(3):272-8. PubMed ID: 21376044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.
    Naguleswaran A; Doiron N; Roditi I
    BMC Genomics; 2018 Apr; 19(1):227. PubMed ID: 29606092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly.
    Sharma R; Gluenz E; Peacock L; Gibson W; Gull K; Carrington M
    Trends Parasitol; 2009 Nov; 25(11):517-24. PubMed ID: 19747880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of Gambian sleeping sickness with open vector populations.
    Artzrouni M; Gouteux JP
    IMA J Math Appl Med Biol; 2001 Jun; 18(2):99-117. PubMed ID: 11453470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei.
    Rico E; Ivens A; Glover L; Horn D; Matthews KR
    PLoS Pathog; 2017 Mar; 13(3):e1006279. PubMed ID: 28334017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flying tryps: survival and maturation of trypanosomes in tsetse flies.
    Dyer NA; Rose C; Ejeh NO; Acosta-Serrano A
    Trends Parasitol; 2013 Apr; 29(4):188-96. PubMed ID: 23507033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Major Step towards Defining the Elusive Stumpy Inducing Factor in Trypanosoma brucei.
    Sollelis L; Marti M
    Trends Parasitol; 2019 Jan; 35(1):6-8. PubMed ID: 30554967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic antimicrobial peptide killing of African trypanosomes and Sodalis glossinidius, a bacterial symbiont of the insect vector of sleeping sickness.
    Haines LR; Hancock RE; Pearson TW
    Vector Borne Zoonotic Dis; 2003; 3(4):175-86. PubMed ID: 14733670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
    Engstler M; Boshart M
    Genes Dev; 2004 Nov; 18(22):2798-811. PubMed ID: 15545633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected plasticity in the life cycle of
    Schuster S; Lisack J; Subota I; Zimmermann H; Reuter C; Mueller T; Morriswood B; Engstler M
    Elife; 2021 Aug; 10():. PubMed ID: 34355698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites.
    Iribarren PA; Di Marzio LA; Berazategui MA; Saura A; Coria L; Cassataro J; Rojas F; Navarro M; Alvarez VE
    PLoS Pathog; 2024 Apr; 20(4):e1012166. PubMed ID: 38635823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling the components of the quorum sensing pathway in African trypanosomes.
    Mony BM; Matthews KR
    Mol Microbiol; 2015 Apr; 96(2):220-32. PubMed ID: 25630552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream.
    Silvester E; McWilliam KR; Matthews KR
    Pathogens; 2017 Jun; 6(3):. PubMed ID: 28657594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surface transporter family conveys the trypanosome differentiation signal.
    Dean S; Marchetti R; Kirk K; Matthews KR
    Nature; 2009 May; 459(7244):213-7. PubMed ID: 19444208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.