These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20526730)

  • 21. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA-directed self-assembling of carbon nanotubes.
    Li S; He P; Dong J; Guo Z; Dai L
    J Am Chem Soc; 2005 Jan; 127(1):14-5. PubMed ID: 15631425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.
    Shiraki T; Tsuzuki A; Toshimitsu F; Nakashima N
    Chemistry; 2016 Mar; 22(14):4774-9. PubMed ID: 26872299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.
    Hwu JR; Kapoor M; Li RY; Lin YC; Horng JC; Tsay SC
    Chem Asian J; 2014 Dec; 9(12):3408-12. PubMed ID: 25294777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification.
    Zhao W; Gao Y; Brook MA; Li Y
    Chem Commun (Camb); 2006 Sep; (34):3582-4. PubMed ID: 17047771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing.
    Xu PF; Noh H; Lee JH; Cha JN
    Phys Chem Chem Phys; 2011 Jun; 13(21):10004-8. PubMed ID: 21336403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel method for the functionalization of gamma-irradiated single wall carbon nanotubes with DNA.
    Jovanović SP; Marković ZM; Kleut DN; Romcević NZ; Trajković VS; Dramićanin MD; Todorović Marković BM
    Nanotechnology; 2009 Nov; 20(44):445602. PubMed ID: 19801777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring the electronic structure of double-walled carbon nanotubes by encapsulating single-stranded DNA.
    Li Y; Kaneko T; Hatakeyama R
    Small; 2010 Mar; 6(6):729-32. PubMed ID: 20183813
    [No Abstract]   [Full Text] [Related]  

  • 32. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R; Tang Z; Yan J; Kang H; Kim Y; Zhu Z; Tan W
    Anal Chem; 2008 Oct; 80(19):7408-13. PubMed ID: 18771233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA.
    Gigliotti B; Sakizzie B; Bethune DS; Shelby RM; Cha JN
    Nano Lett; 2006 Feb; 6(2):159-64. PubMed ID: 16464027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fundamental study of photoluminescence modulation from DNA-wrapped single-walled carbon nanotubes.
    Oura S; Ito M; Homma Y; Umemura K
    Eur Biophys J; 2018 Jul; 47(5):523-530. PubMed ID: 29159501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion.
    Zhang L; Li T; Li B; Li J; Wang E
    Chem Commun (Camb); 2010 Mar; 46(9):1476-8. PubMed ID: 20162153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.
    Zhao C; Qu K; Song Y; Xu C; Ren J; Qu X
    Chemistry; 2010 Jul; 16(27):8147-54. PubMed ID: 20512822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noncalssical multiscale modeling of ssDNA manipulation using a CNT-nanocarrier based on AFM.
    Korayem MH; Estaji M; Homayooni A
    Colloids Surf B Biointerfaces; 2017 Oct; 158():102-111. PubMed ID: 28686901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and separation of DNA-wrapped carbon nanotubes.
    Ao G; Zheng M
    Curr Protoc Chem Biol; 2015 Mar; 7(1):43-51. PubMed ID: 25727062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry.
    Chen CL; Yang CF; Agarwal V; Kim T; Sonkusale S; Busnaina A; Chen M; Dokmeci MR
    Nanotechnology; 2010 Mar; 21(9):095504. PubMed ID: 20139486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.